Previous |  Up |  Next

Article

Keywords:
torsion theory; semicentered torsion theory; multiplication module; distributive module
Summary:
We study the construction of new multiplication modules relative to a torsion theory $\tau $. As a consequence, $\tau $-finitely generated modules over a Dedekind domain are completely determined. We relate the relative multiplication modules to the distributive ones.
References:
[1] Albu T., Năstăsescu C.: Modules arithmétiques. Acta Math. A. S. Hung. 25 (3-4) (1974), 299-311. MR 0357383
[2] Barnard A.: Multiplication modules. J. of Algebra 71 (1981), 174-178. MR 0627431 | Zbl 0468.13011
[3] Bueso J.L., Torrecillas B., Verschoren A.: Local cohomology and localization. Pitman Research Notes in Mathematics Series 226, Longman Scientific and Technical, Harlowe, 1989. MR 1088249 | Zbl 0691.14003
[4] Camillo V.: Distributive modules. J. of Algebra 36 (1975), 16-25. MR 0573061 | Zbl 0308.16015
[5] El-Bast Abd., Smith P.F.: Multiplication modules. Comm. in Algebra 16 (4) (1988), 755-779. MR 0932633 | Zbl 0642.13003
[6] Escoriza J., Torrecillas B.: Multiplication modules relative to torsion theories. Comm. in Algebra 23 (11) (1995), 4315-4331. MR 1351136 | Zbl 0849.13008
[7] Gilmer R.W.: Multiplicative ideal theory. Marcel Dekker, New York, 1972. MR 0427289 | Zbl 0804.13001
[8] Griffin M.: Multiplication rings via their total quotient rings. Can. J. Math. XXVI (2) (1974), 430-449. MR 0340238 | Zbl 0259.13007
[9] Hasan M.A.K., Naoum A.G.: The residual of finitely generated multiplication modules. Arch. Math. 46 (1986), 225-230. MR 0834840 | Zbl 0573.13001
[10] Larsen M.D., McCarthy P.J.: Multiplicative theory of ideals. Pure and Applied Mathematics 43 Academic Press, New York, 1979. MR 0414528 | Zbl 0237.13002
[11] Mehdi F., Singh S.: Multiplication modules. Canad. Math. Bull. 22 (1) (1979), 93-98. MR 0532275 | Zbl 0408.13002
[12] Năstăsescu C.: La structure des modules par rapport à une topologie additive. Tôhoku Math. Journal 26 (1974), 173-201. MR 0349765
[13] Smith P.F.: On non-commutative AM-rings. Houston J. of Math. 11.3 (1985), 405-422. Zbl 0608.16009
[14] Smith P.F.: Some remarks on multiplication modules. Arch. Math. 50 (1988), 223-235. MR 0933916 | Zbl 0615.13003
[15] Smith W.W.: Projective ideals of finite type. Canad. J. Math. 21 (1969), 1057-1061. MR 0246864 | Zbl 0183.04001
[16] Stenström B.: Rings of Quotiens. Springer-Verlag, Berlin, 1975. MR 0389953
[17] Stephenson W.: Modules whose lattice of submodules is distributive. Proc. London Math. Soc. 3 28 (1974), 291-310. MR 0338082 | Zbl 0294.16003
[18] Ukegawa T.: Some properties of non-commutative multiplication rings. Proc. Japan Acad. 54 Ser. A (1978), 279-284. MR 0517670 | Zbl 0434.16004
[19] Ukegawa T.: Left noetherian multiplication rings. Osaka J. Math. 17 (1980), 449-453. MR 0587765 | Zbl 0444.16023
[20] Ukegawa T.: Some remarks on $M$-rings. Math. Japonica 28 2 (1983), 195-203. MR 0699583 | Zbl 0517.16026
Partner of
EuDML logo