Previous |  Up |  Next

Article

Keywords:
firmly pseudo-contractive mappings on nonconvex domains; fixed points
Summary:
We give some fixed point theorems for firmly pseudo-contractive mappings defined on nonconvex subsets of a Banach space. We also prove some fixed point results for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive Banach space.
References:
[1] Browder F.E.: Nonlinear mappings of nonexpansive and accretive type in Banach spaces. Bull. Amer. Math. Soc. 73 (1967), 875-882. MR 0232255 | Zbl 0176.45302
[2] Carbone A., Marino G.: Fixed points and almost fixed points of nonexpansive maps in Banach spaces. Riv. Mat. Univ. Parma (4) 13 (1987), 385-393. MR 0977691 | Zbl 0674.47037
[3] Deimling K.: Zeros of accretive operators. Manuscripta Math. 13 (1974), 365-374. MR 0350538 | Zbl 0288.47047
[4] Diestel J.: Geometry of Banach Spaces, Selected Topics. Lecture Notes in Math., Vol. 485, Springer-Verlag, Berlin, Heidelberg, New York, 1975. MR 0461094 | Zbl 0466.46021
[5] Goebel K., Kuczumow T.: A contribution to the theory of nonexpansive mappings. Bull. Can. Math. Soc. 70 (1978), 355-357. MR 0584472 | Zbl 0437.47040
[6] Kato T.: Nonlinear semigroups and evolution equations. J. Math. Soc. Japan 19 (1967), 508-520. MR 0226230 | Zbl 0163.38303
[7] Kirk W.A., Ray W.O.: Fixed point theorem for mappings defined on unbounded sets in Banach spaces. Studio Math. 64 (1979), 127-138. MR 0537116
[8] Martin R.H.: Differential equations on closed subsets of a Banach space. Trans. Math. Soc. 81 (1981), 71-74.
[9] Ray W.O.: Zeros of accretive operators defined on unbounded sets. Houston J. Math. 5 (1979), 133-139. MR 0533647 | Zbl 0412.47032
[10] Schu J.: Iterative approximation of fixed point of nonexpansive mappings with starshaped domain. Comment. Math. Univ. Carolinae 31.2 (1990), 277-282. MR 1077898
[11] Schu J.: Approximation of fixed points of asymptotically nonexpansive mappings. Proc. Amer. Math. Soc. 112 (1991), 143-151. MR 1039264
[12] Wang S.Z., Y B., Gao M., Iseki K.: Some fixed point theorems on expansion mappings. Math. Japon. 29 (1984), 631-636. MR 0759452 | Zbl 0554.54023
[13] Williamson T.E.: A geometric approach to fixed points of nonself mapping $T:D\rightarrow X$. Contemp. Math. 18 (1983), 243-253. MR 0728603
Partner of
EuDML logo