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Firmly pseudo-contractive mappings and fixed points

B.K. Sharma, D.R. Sahu

Abstract. We give some fixed point theorems for firmly pseudo-contractive mappings
defined on nonconvex subsets of a Banach space. We also prove some fixed point results
for firmly pseudo-contractive mappings with unbounded nonconvex domain in a reflexive
Banach space.
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1. Introduction

Let X be a real Banach space and D be a nonempty subset of X . An operator
T : D → X is said to be firmly pseudo-contractive if for each x, y ∈ D and λ > 0

(1) ‖x − y‖ ≤ ‖(1− λ)(x − y) + λ(T (x) − T (y))‖.

If (1) holds locally, i.e. if each x ∈ D has a neighborhood U such that the restric-
tion of T to U is firmly pseudo-contractive, then T is said to be a local firmly
pseudo-contractive.
Following Kato [6], we are able to find an equivalent definition for firmly

pseudo-contractive operators. An operator T : D → X is firmly pseudo-cont-
ractive if and only if for every x, y ∈ D there exists j ∈ J(x − y) such that

(2) 〈T (x)− T (y), j〉 ≥ ‖x − y‖2,

where j : X → 2X
∗

is the normalized duality mapping which is defined by

J(u) = {j ∈ X∗ : 〈u, j〉 = ‖u‖2, ‖j‖ = ‖u‖}

(see Browder [1] and Kato [6]). It is an immediate consequence of the Hahn-
Banach theorem that J(u) is nonempty for each u ∈ X .
The firmly pseudo-contractive mappings are characterized by the fact a map-

ping T : D → X is firmly pseudo-contractive if and only if the mappings f = T −I
is accretive on D (see Lemma 2.2). Recent interest in mapping theory for accre-
tive operators (e.g. [1], [3], [6], [8], [9]) particularly as it relates to existence
theorems for nonlinear ordinary and partial differential equations, has prompted
a corresponding interest in the fixed point theory for firmly pseudo-contractive
mappings.
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We prove approximating fixed point and fixed point theorems for firmly pseudo-
contractive nonself mapping T : D → X , where D is a nonconvex closed subset
of Banach space X . In Section 3, we present some theorems for firmly pseudo-
contractive mappings with unbounded nonconvex domain in Banach space by
applying the results derived in Section 2.

Notation 2. Weak (weak∗) convergence of a sequence {xn} will be denoted by

xn
w
−→ x (xn

w∗

−−→ x) and strong convergence by xn → x. The set of fixed points
of a mapping T will be denoted by F (T ).

2. Approximating fixed points of firmly pseudo-contractive mappings

Before giving our results, we give some lemmas.

Lemma 2.1. Let (X, (·, ·)) be a real Hilbert space, φ 6= D ⊂ X and T : D → X .
Then the following are equivalent:

(a) T is firmly pseudo-contractive;
(b) ‖x − y‖2 + ‖(I − T )(x)− (I − T )(y)‖2 ≤ ‖T (x)− T (y)‖2 for all x, y ∈ D;
(c) T − I is monotone.

Lemma 2.2. Let X be a real Banach space, φ 6= D ⊂ X and T : D → X . The
following are equivalent:

(a) T is firmly pseudo-contractive;
(b) 2I − T is pseudo-contractive;
(c) T − I is accretive.

Above lemmas can be shown by simple calculations.

Lemma 2.3. Let X be a real Banach space, α, β ∈ R, x, y ∈ X and

‖x − y‖ ≤ ‖(1− α)x − (1− β)y‖.

Then 〈αx − βy, j〉 ≤ 0 for all j ∈ J(x − y).

Proof: It follows from Kato [6]. �

Lemma 2.4. Let X be a real smooth Banach space, φ 6= D ⊂ X and T : D → X
is firmly pseudo-contractive. Suppose for x ∈ D there is a λ > 1 such that
x = λT (x). Then 〈x, J(y − x)〉 ≥ 0 for all y ∈ F (T ).

Proof: Set r = −(λ−1− 1). By firmly pseudo-contractivity of T , we have for all
y ∈ F (T )

〈λ−1x − y, j(y − x)〉 = 〈T (x)− T (y), J(y − x)〉

≤ −‖x − y‖2

= 〈x − y, J(y − x)〉

yields
〈−rx, J(y − x)〉 ≤ 0,

where r > 0. Therefore 〈x, J(y − x)〉 ≥ 0, completing the proof. �
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Lemma 2.5. Let X be a real smooth Banach space possessing a weakly sequen-
tially continuous duality mapping J : X → X∗, φ 6= D ⊂ X be closed and

T : D → X continuous firmly pseudo-contractive. Suppose {xn} is a sequence in

D with xn
w
−→ x and {λn} is a strictly decreasing real sequence in (1,∞) with

limn→∞ λn = 1 such that xn = λnT (xn) for all n ∈ N . Then limn→∞ xn = x
and F (T ) 6= φ.

Proof: For xm, xn ∈ D, m ≥ n, by inequality (1), we obtain

‖xm − xn‖ ≤ ‖(1− λ)(xm − xn) + λ(λ−1m xm − λ−1n xn)‖

= ‖(1− λ(1 − λ−1m ))xm − (1− λ(1 − λ−1n ))xn‖.

Hence, it follows from Lemma 2.3 that

〈(1− λ−1m )xm − (1− λ−1n )xn, J(xm − xn)〉 ≤ 0,

since (1− λ−1m ) > (1− λ−1n ) ≥ 0 for m > n, hence from Lemma 2 of [10] we get

〈xm, J(xn − xm)〉 ≥ 0.

For fixed m ∈ N , (xn−xm)
w
−→ (x−xm), hence by [4] J(xn−xm)

w∗

−−→ J(x−xm)
and hence (3) implies

0 ≤ lim
n→∞

〈xm, J(xn − xm)〉 = 〈xm, J(x − xm)〉.

Therefore,

‖x − xm‖2 = 〈x, J(x − xm)〉 − 〈xm, J(x − xm)〉

≤ 〈x, J(x − xm)〉.

It follows that limm→∞ xm = x, because limm→∞〈x, J(x − xm)〉 = 0. Since T is
continuous and xn = λnT (xn), it follows T (x) = x. �

Lemma 2.6. Let X be a real smooth Banach space possessing a weakly sequen-
tially continuous duality mapping J : X → X∗, φ 6= D ⊂ X and T : D → X

firmly pseudo-contractive. Suppose {xn} is a sequence in D with xn
w
−→ x and

T (x) = x for x ∈ D and {λn} is a real sequence in (1,∞) such that xn = λnT (xn)
for all n ∈ N . Then

(a) limn→∞ xn = x;
(b) 〈x, J(y − x)〉 ≥ 0 for all y ∈ F (T ).

Proof: (a) Since x = T (x) for x ∈ D and xn = λnT (xn) for all n ∈ N , it follows
from Lemma 2.4 that

〈xn, J(x − xn)〉 ≥ 0 for all n ∈ N.
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Therefore for all n ∈ N ,

‖x − xn‖
2 = 〈x, J(x − xn)〉 − 〈xn, J(x − xn)〉

≤ 〈x, J(x − xn)〉.

Since (x − xn)
w
−→ 0 and J is weakly sequentially continuous at zero, we obtain

limn→∞ ‖x − xn‖ = 0.

(b) Fix y ∈ F (T ), hence by Lemma 2.4 we have

〈xn, T (y − xn)〉 ≥ 0 for all n ∈ N.

Since X is smooth, J is strong-weak∗ continuous (see e.g. [4]) and limn→∞(y −

xn) = (y − x), we conclude that J(y − xn)
w∗

−−→ J(y − x). Therefore,

0 ≤ lim
n→∞

〈xn, J(y − xn)〉 = 〈x, J(y − x)〉,

completing the proof. �

Lemma 2.7. Let X be a real Banach space, φ 6= D ⊂ X be closed, T : D → X
firmly pseudo-contractive and {λn} be a real sequence in (1,∞). Suppose {Sn}
be a surjective mapping from X into itself defined by

(4) Sn = λnT + (λn − 1)A for all n ∈ N.

Then for each n ∈ N there is exactly one xn ∈ D such that

xn = λnT (xn) + (λn − 1)A(xn) for all n ∈ N.

(A stands for specific function defined by A = u + kI for some u in X and for
some k in (−1,∞)).

Proof: Since T is firmly pseudo-contractive, then for x, y ∈ D, n ∈ N , there
exists j ∈ J(x − y) so that from (4)

〈Sn(x) − Sn(y), j〉 = λn〈T (x)− T (y), j〉+ (λn − 1)k‖x − y‖2

≥ [λn + (λn − 1)k]‖x − y‖2

yields
‖Sn(x)− Sn(y)‖ ≥ an‖x − y‖,

where an = [λn − (λn − 1)k] > 1. Since an > 1 for all n ∈ N , it follows from
Theorem 1 of [12] that Sn possesses exactly one fixed point xn in D. It means
that

xn = λnT (xn) + (λn − 1)A(xn) for all n ∈ N,

completing the proof. �

Now we prove our results as below.
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Theorem 2.1. Let X be a real reflexive Banach space possessing a weakly se-
quentially continuous duality mapping J : X → X∗, φ 6= D ⊂ X be closed

and bounded, T : D → X continuous firmly pseudo-contractive and {λn} is a
strictly decreasing real sequence in (1,∞) with limn→∞ λn = 1. Suppose {Sn} is
a sequence of surjective mappings from X into itself defined by

Sn = λnT + (λn − 1)A for all n ∈ N,

where A is a linear operator on D into X defined by Ax = k′x for all x ∈ D and
for some k′ ∈ (−1,∞). Then

(a) for each n ∈ N there is exactly one xn ∈ D such that

xn = (λn/(1− (λn − 1)k′)) T (xn);

(b) {xn} converges strongly to some fixed point of T .

Proof: Part (a) follows from Lemma 2.7, so (b) remains to be proved. Since
X is reflexive and D is bounded, there exists z ∈ X and a subsequence {xµn

} of

{xn} such that xµn

w
−→ z (Pettis’ theorem). Applying Lemma 2.5, we conclude

that limn→∞ xµn
= z and z = Tz. Again applying Lemma 2.6, we get

〈z, J (y − z)〉 ≥ 0 for all y ∈ F (T ),

and the result follows by Theorem 1.7 of [11]. �

Theorem 2.2. Let X be a real smooth Banach space possessing a weakly se-
quentially continuous duality mapping J : X → X∗, φ 6= D ⊂ X be closed and
T : D → X continuous firmly pseudo-contractive. Suppose {xn} is a sequence

in D with xn
w
−→ x and {λn} a strictly increasing real sequence in (0, 1) with

limn→∞ λn = 1 such that

(2λn − 1)xn = λnT (xn) for all n ∈ N.

Then limn→∞ xn = x and x ∈ F (T ).

Proof: Defining δn = λ[1 − (2λn − 1)λ−1n ] for all n ∈ N , hence for m > n,
δn > δm ≥ 0 from (1), we have

‖xn − xm‖ ≤ ‖(1− λ)(xn − xm) + λ[(2λn − 1)λ−1n xn − (2λm − 1)λ−1m xm]‖

= ‖(1− δn)xn − (1− δm)xm‖.

Using Lemma 2.3, we obtain

〈δnxn − δmxm, J(xn − xm)〉 ≤ 0,

it follows from Lemma 2 and 3 of [10] that limn→∞ xn = x. Since T is continuous
and (2λn − 1)xn = λnT (xn), the result follows. �
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Theorem 2.3. Let X be a real reflexive Banach space possessing a weakly se-
quentially continuous duality mapping J : X → X∗, φ 6= D ⊂ X be closed,

bounded and starshaped with respect to zero and T : D → X continuous firmly
pseudo-contractive. Then F (T ) 6= φ.

Proof: For n ∈ N , define Tn = λn(2I − T ) : D → D, and λn = 1−
1
n . Then by

Lemma 2.2 Tn is strictly pseudo-contractive and hence it follows from Corollary 1
of [3] that Tn possesses exactly one fixed point xn ∈ D. Since X is reflexive and
{xn} is bounded, there exists an x ∈ D and some subsequence {xψn

} of {xn}

such that xψn

w
−→ x. The result follows from Theorem 2.2. �

3. Fixed points of firmly pseudo-contractive mappings with

unbounded nonconvex domain

In [5], Goebel and Kuczumow proved a result for nonexpansive mappings on a
closed convex subset of a Hilbert space which is expanded in [2], [7], [9], [13].
Thus it is interesting to investigate the existence of fixed points for firmly

pseudo-contractive mappings defined on closed unbounded nonconvex subset in
Banach space. We begin with the following lemma.

Lemma 3.1. Let X be a real Banach space, φ 6= D ⊂ X and T : D → X firmly
pseudo-contractive. Suppose the set

(5)
G(z) = {u ∈ D : (r − 1)‖u − z‖2 + r〈T (z), j〉 ≤ 0 for some

j ∈ J(u − z) and r > 1}

is bounded for some z in D. Then the set H = {x ∈ D : x = λT (x) for some
λ > 1} is bounded.

Proof: Without loss of generality we may assume that z = 0 and T (0) 6= 0. Let
x ∈ H , then x = λT (x) for some λ > 1. Since T is firmly pseudo-contractive,
there exists j ∈ J(x) such that

〈T (x)− T (0), j〉 ≥ ‖x − 0‖2,

i.e.

λ−1‖x‖2 − 〈T (0), j〉 ≥ ‖x‖2

yielding

〈T (0), j〉+ t‖x‖2 ≤ 0 for some j ∈ J(x),

where t = (1− λ−1) < 1, hence x ∈ G(0). Since G(0) is bounded, therefore H is
bounded. �



Firmly pseudo-contractive mappings and fixed points 107

Theorem 3.1. Let X be a real smooth Banach space possessing a weakly se-
quentially continuous duality mapping J : X → X∗, φ 6= D ⊂ X be closed and
T : D → X continuous firmly pseudo-contractive. Suppose {λn} is a strictly
decreasing real sequence in (1,∞) with limn→∞ λn = 1 and {Sn} is a sequence
of surjective mappings from X into itself defined by

Sn = λnT + (λn − 1)A for all n ∈ N,

where A : D → X is a linear operator on D into X defined by Ax = hx for all
x ∈ D and for some h ∈ (−1,∞). Also suppose that the set G(z) is bounded for
some z ∈ D. Then F (T ) 6= φ.

Proof: For n ∈ N , by Lemma 2.7, we obtain

xn = (1 − (λn − 1)h)−1λnT (xn).

Set cn = (1 − (λn − 1)h)−1λn for all n ∈ N . Since cn > 1, n ∈ N , then we
conclude from Lemma 3.1 that {xn} is bounded. Applying Lemma 2.5, we get
the result. �

Theorem 3.2. Let X be a real reflexive Banach space possessing a weakly se-
quentially continuous duality mapping J : X → X∗, φ 6= D ⊂ X be closed

and starshaped with respect to zero and T : D → X continuous firmly pseudo-
contractive. Suppose that the set G(z) is bounded for some z ∈ D. Then
F (T ) 6= φ.

Proof: As in proof of Theorem 2.4, for each n ∈ N there exists a unique xn ∈ D
such that xn = (2λn − 1)−1λnT (xn), where λn = 1 −

1
n . Hence, it follows from

Lemma 3.1 that {xn} is bounded. Thus the result follows by Theorem 2.2. �
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