Article
Keywords:
Open Coloring Axiom; dense sets of reals; towers; forcing; Suslin trees
Summary:
We shall show that Open Coloring Axiom has different influence on the algebra $\Cal P(\Bbb N)/fin$ than on $\Bbb N^\Bbb N/fin$. The tool used to accomplish this is forcing with a Suslin tree.
References:
[1] Abraham U., Rubin M., Shelah S.:
On the consistency of some partition theorems for continuous colorings, and the structure of $\aleph_1$-dense real order types. Ann. of Pure and Appl. Logic 29 (1985), 123-206.
MR 0801036
[2] Baumgartner J.:
All $\aleph_1$-dense sets of reals can be isomorphic. Fundamenta Mathematicae 79 (1973), 100-106.
MR 0317934 |
Zbl 0274.02037
[3] Devlin K., Johnsbråten H.:
The Souslin Problem. Springer Lecture Notes in Mathematics, # 405 (1974).
MR 0384542
[4] Dordal P.L.:
Towers in $[ømega]^ømega$ and $^ømegaømega$. Ann. of Pure and Appl. Logic 247-277 (1989), 45.3.
MR 1032832
[5] Fremlin D.:
Consequences of Martin's Axiom. Cambridge University Press (1984).
Zbl 0551.03033
[7] Todorčević S.:
Partition Problems in Topology. AMS Providence, Rhode Island (1989).
MR 0980949
[8] Todorčević S.:
Oscillations of sets of integers. to appear.
MR 1601383
[9] Veličković B.:
OCA and automorphisms of $\Cal P(ømega)/fin$. Topology Appl. 49 (1993), 1-13.
MR 1202874
[10] Weese M.: personal communication.