[1] Acketa D.M., Mudrinski V.: A $4$-design on $38$ points. submitted.
[2] Acketa D.M., Mudrinski V., Paunić Dj.:
A search for $4$-designs arising by action of $PGL(2,q)$. Publ. Elektrotehn. Fak., Univ. Beograd, Ser. Mat. 5 (1994), 13-18.
MR 1322263 |
Zbl 0816.05017
[3] Acketa D.M., Mudrinski V.:
Two $5$-designs on $32$ points. accepted for Discrete Mathematics.
Zbl 0873.05010
[5] Beth T., Jungnickel D., Lenz B.:
Design Theory. Bibliographisches Institut Mannheim- Wien-Zürich, 1985.
MR 0779284 |
Zbl 0945.05005
[6] Chee Y.M., Colbourn C.J., Kreher D.L.:
Simple $t$-designs with $t \leq 30$. Ars Combinatoria 29 (1990), 193-258.
MR 1046108
[7] Dautović S., Acketa D.M., Mudrinski V.: A graph approach to isomorphism testing of $4$-$(48,5,\lambda)$ designs arising from $PSL(2,47)$. submitted.
[9] Driessen L.M.H.E.: $t$-designs, $t \geq 3$. Tech. Report (1978), Department of Mathematics, Eindhover University of Technology, Holland.
[10] Gorenstein D.:
Finite Simple Groups, An Introduction to Their Classification. Plenum Press, New York, London, 1982.
MR 0698782 |
Zbl 0672.20010
[11] Huppert B.:
Endliche Gruppen, I. Die Grundlehren der matematischen Wissenschaften. Band 134 (1967), Springer-Verlag, Berlin, Heidelberg, New York, xii + 793 pp.
MR 0224703
[12] Huppert B., Blackburn N.:
Finite Groups, III. Die Grundlehren der matematischen Wissenschaften, Band 243 (1982), Springer-Verlag, Berlin, Heidelberg, New York, p.454.
MR 0662826 |
Zbl 0514.20002
[13] Janko Z., Tonchev V.: Private communication.
[14] Kramer E.S., Leavitt D.W., Magliveras S.S.:
Construction procedures for $t$-designs and the existence of new simple $6$-designs. Ann. Discrete Math. 26 (1985), 247-274.
MR 0833794 |
Zbl 0585.05002
[15] Kramer E.S., Mesner D.M.:
$t$-designs on hypergraphs. Discrete Math. 15 (1976), 263-296.
MR 0460143 |
Zbl 0362.05049
[16] Kreher D.L., Radziszowski S.P.:
The existence of simple $6$-$(14,7,4)$ designs. Jour. of Combinatorial Theory, Ser. A 43 (1986), 237-243.
MR 0867649 |
Zbl 0647.05013
[17] Kreher D.L., Radziszowski S.P.:
Simple $5$-$(28,6,\lambda)$ designs from $PSL_2(27)$. Ann. Discrete Math. 34 (1987), 315-318.
MR 0920656