Previous |  Up |  Next

Article

Keywords:
exposed point; denting point; Hilbert space; positive operator
Summary:
In the paper the geometric properties of the positive cone and positive part of the unit ball of the space of operator-valued continuous space are discussed. In particular we show that $\text{ext-ray} \text{C}_+(K,\mathcal L(H)) = \{\Bbb R_+ {\bold 1}_{\{k_0\}} \bold x\otimes\bold x : \bold x\in \bold S(H), k_0 \text{ is an isolated point of } K\}$ $\text{ext} \bold B_+(\text{C}(K,\mathcal L(H))) = \text{s-ext } \bold B_+(\text{C}(K,\mathcal L(H)))=\{f\in \text{C}(K,\mathcal L(H) : f(K)\subset \text{ext } \bold B_+(\mathcal L(H))\}$. Moreover we describe exposed, strongly exposed and denting points.
References:
[1] Argyros S.: On compact space without strictly positive measures. Pacific J. Math. 105 (1983), 257-272. MR 0691601
[2] Blumenthal R., Lindenstrauss J., Phelps R.: Extreme operators into $C(K)$. Pacific J. Math. 15 (1968), 35-46. MR 0209862
[3] Comfort W.W., Negrepontis S.: Chain conditions in topology. Cambridge University Press, 1982. MR 0665100 | Zbl 1156.54002
[4] Clarkson J.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40 (1936), 396-414. MR 1501880 | Zbl 0015.35604
[5] Gaifman H.: Concerning measures on Boolean algebras. Pacific J. Math. 14 (1964), 61-73. MR 0161952 | Zbl 0127.02306
[6] Grząślewicz R.: Extreme operators on $2$-dimensional $l^p$ spaces. Colloquium Math. 44 (1981), 309-315. MR 0652589
[7] Grząślewicz R.: Extreme positive contractions on the Hilbert space. Portugaliae Math. 46 (1989), 341-349. MR 1032505
[8] Grząślewicz R.: Extreme operator valued continuous maps. Arkiv för Matematik 29 (1991), 73-81. MR 1115076
[9] Grząślewicz R.: On the geometry of ${\Cal L}(H)$. submitted.
[10] Grząślewicz R., Hadid S.B.: Denting points in the space of operator valued continuous maps. Revista Mat. Univ. Comp. Madrid, to appear. MR 1430779
[11] Herbert D.J., Lacey H.E.: On supports of regular Borel measures. Pacific J. Math. 27 (1968), 101-118. MR 0235088
[12] Kadison R.V.: Isometries of operator algebras. Ann. Math. 54 (1954), 325-338. MR 0043392
[13] Kelley J.L.: Measures on Boolean algebras. Pacific J. Math. 9 (1959), 1165-1177. MR 0108570 | Zbl 0087.04801
[14] Bor-Luh Lin, Pei-Kee Lin, Troyanski S.L.: Characterizations of denting points. Proc. Amer. Math. Soc. 102 (1988), 526-528. MR 0928972
[15] Maharam D.: An algebraic characterization of measure algebras. Math. Ann. 48 (1947), 154-167. MR 0018718 | Zbl 0029.20401
[16] Michael E.: Continuous selections I. Ann. of Math. 63 (1956), 361-382. MR 0077107 | Zbl 0071.15902
[17] Moore L.C., Jr.: Strictly increasing Riesz norms. Pacific J. Math. 37 (1971), 171-180. MR 0306866 | Zbl 0237.46016
[18] Papadopoulou S.: On the geometry of stable compact convex sets. Math. Ann. 229 (1977), 193-200. MR 0450938 | Zbl 0339.46001
[19] Rosenthal H.P.: On injective Banach spaces and the spaces $L^\infty(\mu)$ for finite measures $\mu$. Acta Math. 124 (1970), 205-248. MR 0257721
Partner of
EuDML logo