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On positive operator-valued continuous maps

Ryszard Grza̧ślewicz

Abstract. In the paper the geometric properties of the positive cone and positive part of
the unit ball of the space of operator-valued continuous space are discussed. In particular
we show that
ext-ray C+(K,L(H)) = {R+1{k0}x⊗ x : x ∈ S(H), k0 is an isolated point of K}

ext B+(C(K,L(H))) = s-ext B+(C(K,L(H)))
= {f ∈ C(K,L(H) : f(K) ⊂ ext B+(L(H))}.

Moreover we describe exposed, strongly exposed and denting points.
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Classification: Primary 47D20; Secondary 46B20

1. Introduction

The paper is devoted to the geometric properties of the space of continuous
functions from a compact Hausdorff space K with values in the space of operators
acting on a Hilbert space H . Namely, we deal with the positive part of the unit
ball and the cone of positive operators in L(H). We consider such points as
strongly extreme, exposed, strongly exposed and denting points.
For a Banach space E we denote by B(E) and S(E) respectively the unit

ball and the unit sphere of E. A subset P of E is called a convex cone (of
vertex 0) if P is convex (x,y ∈ P, α ∈ [0, 1] ⇒ αx + (1 − α)y ∈ P ) and
invariant under multiplication by positive constant (x ∈ P, λ ∈ R+ ⇒ λx ∈ P ).
A ray R = {λxo : λ ∈ R+} = R+xo, 0 6= xo ∈ P , is called an extreme ray
(R ∈ ext-ray P ) if x ∈ R, y ∈ P , and x− y ∈ P imply y ∈ R.
A point q of a convex set Q ⊂ E is extreme (q ∈ ext Q) if it is not the midpoint

of any segment of positive length contained in Q; strongly extreme (q ∈ s-ext Q)

if ‖xn+yn

2 − q‖ → 0 for xn, yn ∈ Q implies ‖xn − q‖ → 0 (or equivalently

‖xn − yn‖ → 0, since xn − q = xn−yn

2 + (xn+yn

2 − q) ); exposed (q ∈ exp Q)
if there exists ξ ∈ Q∗ such that ξ(q) = sup ξ(Q) > ξ(x) for all x ∈ Q \ {q};
strongly exposed (q ∈ s-exp Q) if it is exposed and if ξ(xn) → ξ(q) for xn ∈ Q
then ‖xn − q‖ → 0; and denting (q ∈ dent Q) if for all ε > 0 we have q /∈
conv (Q\{q+εB(E)}). Note that in general this classes of points do not coincide.
We have s-exp Q ⊂ dent Q ⊂ s-ext Q ⊂ ext Q and s-exp Q ⊂ exp Q ⊂ ext Q.

1 Written while the author was a research fellow of the Alexander von Humboldt-Stiftung at
Mathematisches Institut der Eberhard Karls-Universität in Tübingen.
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Moreover, if Q is compact then dent Q = s-ext Q = ext Q and s-exp Q = exp Q.
Note that if q ∈ ext Q is a point of continuity for Q (xn → q weakly, xn ∈ Q,
implies xn → q in norm) then q ∈ dent Q ([14]). For an operator T : E → E we
denote by IsDom T = {x ∈ E : ‖Tx‖ = ‖x‖} its isometric domain.
Let H be a (real or complex) Hilbert space equipped with the inner product

〈·, ·〉. By L(H) we denote the space of bounded operators acting on H . The
space L(H) is equipped with the standard operator norm. Note that IsDom T is

a closed linear subspace for all T ∈ B(L(H)). Moreover, T ({x}⊥) ⊂ (Tx)⊥ for

x ∈ IsDom T and T
(

(IsDom T )⊥
)

⊥ T (IsDom T ), T ∈ B(L(H)).

For y, z ∈ H we denote by y ⊗ z the one dimensional operator defined by
(y ⊗ z)(x) = y〈x, z〉, x ∈ H.
The operator T ∈ L(H) is called positive (T ≥ 0) if T is self-adjoint (T = T ∗)

and 〈Tx,x〉 ≥ 0 for all x ∈ H. An operator T is a (orthogonal) projection if
T = T 2 and T = T ∗. If T is a projection then Tx = 0 for all x ⊥ IsDom T .
The cone of all positive operators is denoted by L+(H). The positive part of

the unit ball is denoted by B+(L(H)). Note that ‖T ‖ = sup{〈Tx, x〉 : ‖x‖ ≤ 1}
for T ≥ 0. Hence ‖T ‖ ≤ ‖T +R‖ for T, R ∈ L+(H).
Let T ∈ B+(L(H)) = {T ∈ L(H) : 0 ≤ T ≤ I}. Then T 2, (I−T ) ∈ B+(L(H)).

We have 2T −T 2 = T (2I−T ) ≥ 0 and 0 ≤ (I−T )2 = I−2T+T 2, so 2T −T 2 ≤ I.
Thus 2T − T 2 ∈ B+(L(H)), too.
A one dimensional operator x⊗y, x,y ∈ S(H), is positive if and only if x = y.
Let C(K, E) denote the Banach space of all continuous functions from a com-

pact Hausdorff spaceK into a Banach space E equipped with the supremum norm
‖f‖ = supk∈K ‖f(k)‖E .
Obviously for a convex setQ ⊂ E if f(K) ⊂ ext Q then f ∈ ext {f ∈ C(K, E) :

f(K) ⊂ Q}. There is a natural question for which classes of convex sets Q the
inverse implication characterize extreme points. Negative example of continuous
function F : K → Q (Q is closed symmetric subset of R

4) was presented in [2].
In fact f ∈ ext f ∈ B(C(K, E)) with f(k) /∈ ext B(E) for all k ∈ K.
Using Michael’s selection theorem ([16]) we can prove that ext {f ∈ C(K, E) :

f(K) ⊂ Q} = {f ∈ C(K, E) : f(K) ⊂ ext Q} for any stable convex subset Q
of E. Recall that a convex set Q ⊂ E is said to be stable if the barycenter map

Q × Q ∋ (x,y) → x+y
2 ∈ Q is open. Point out that in finite dimensional space

a set is stable (see [18]) if and only if all m-skeletons (m = 0, 1, . . . , n) of Q are
closed (an m-skeleton of Q is a set of all x ∈ Q such that the face generated by x
in Q has dimension less than or equal to m).
We say that a compact Hausdorff space K carries a strict positive measure if

there exists a strictly positive Radon measure µ on K (i.e. µ(U) > 0 for all non-
empty open U ⊂ K). The problem of characterization of spaces K which carry
a strictly positive measure has been studied by many authors (e.g., see [1], [5],
[11], [15], [17]). In particular Kelley ([13]) introduced the notion of intersection
numbers of a collection of subsets to give the characterization of spaces which carry
a strictly positive measure. It should be pointed out that in the case of a compact
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Hausdorff space the problem mentioned above is equivalent to the problem of
existence of a finitely additive strictly positive measure. Note that C(K, R) carries
a strictly positive functional if and only if its dual C(K, R) contains a weakly
compact total subset ([19, Theorem 4.5b]). We refer the reader [3, Chapter 6],
for summary of those and related results. In fact a strictly positive measure on
K can be considered as a functional on C(K, R) which exposes the function 1K .
By 1A we denote the characteristic function of a set A ⊂ K.
We have

ext B+(L(H)) = {T ∈ L(H) : T 2 = T, T ∗ = T } ([12], [7])

s-ext B+(L(H)) = ext B+(L(H)) ([9]).

exp B+(L(H)) =

{

ext B+(L(H)) if H is separable

∅ if H is not separable
([7]),

s-exp B+(L(H)) = dent B+(L(H)) =

{

ext B+(L(H)) if dim H < ∞

∅ if dim H =∞
,

ext-ray L+(H) = {R+x⊗ x : 0 6= x ∈ H}.

The aim of this paper is to continue investigation for the space of operator
valued continuous functions with values in L+(H). We show that

ext B+(C(K,L(H))) = {f ∈ C(K,L(H)) : f(K) ⊂ ext B+(L(H))},

s-ext B+(C(K,L(H))) = ext B+(C(K,L(H))),

exp B+(C(K,L(H))) =



















ext B+(C(K,L(H))) if H is separable and K

carries a strictly positive

measure

∅ if H otherwise

,

s-exp B+(L(H)) = dent B+(L(H)) =











ext B+(L(H)) if dim H < ∞ and

card K < ∞

∅ if dim H =∞

,

ext-ray C+(K,L(H))={R+1{k0}x⊗x : 0 6= x ∈ H , k0 is an isolated point of K}.

The corresponding results for the whole unit ball are presented in [8], [10].

2. Extremality

Theorem 1. For any Hilbert space H we have

ext B+(C(K,L(H))) = {f ∈ C(K,L(H)) : f(K) ⊂ ext B+(L(H))}.

Proof: Fix f ∈ B+(C(K,L(H))) with non extremal value. Let xo ∈ S(H) be
such that f2(k)xo 6= f(k)xo for some k ∈ K. Put f1 = 2f − f2 and f2 = f2. We

have f1+f2
2 = f and 0 ≤ fi(k) ≤ I. Moreover f1(k)xo = 2f(k)xo − f2(k)xo 6=

f2(k)xo = f2(k)xo, so f1 6= f2. �
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Theorem 2. We have s-ext B+(C(K,L(H))) = ext B+(C(K,L(H))).

Proof: Let f ∈ ext B+(C(K,L(H))). Fix ε > 0. We need to show that there

exists δ > 0 such that ‖ gn+hn

2 − f‖ < δ, x,y ∈ B(H) implies ‖gn − hn‖ < ε.

From the uniform convexity of H there exists δ(ε) such that
∥

∥

∥

x+y
2

∥

∥

∥
> 1− δ(ε)

implies ‖x − y‖ < ε/2. Put δ = min( ε8 , δ(ε)). Fix k ∈ K. For x ⊥ IsDom f(k)
with ‖x‖ ≤ 1 we have ‖gn(k)x − hn(k)x‖ ≤ 2‖gn(k)x+ hn(k)x‖ ≤ 4δ ≤ ε

2 .

For y ∈ IsDom f(k) with ‖y‖ ≤ 1 we have ‖ gn(k)y+hn(k)y
2 ‖ ≥ ‖fn(k)y‖ −

‖ gn(k)y+hn(k)y
2 − fn(k)y‖ ≥ 1− δ. Thus ‖gn(k)y − hn(k)y‖ ≤ ε

2 .

Now let z ∈ B(H). And let y ∈ IsDom f(k) and x ∈ (IsDom f(k))⊥ be such
that z = x + y. Obviously ‖x‖, ‖y‖ ≤ 1. Now we have ‖(gn(k) − hn(k))z‖ =
‖gn(k)x−hn(k)x+gn(k)y−hn(k)y‖ ≤ ‖gn(k)x−hn(k)x‖+‖gn(k)y−hn(k)y‖ ≤
ε/2 + ε/2 = ε, so ‖gn(k)− hn(k)‖ ≤ ε and ‖gn − hn‖ ≤ ε. �

Theorem 3. ext-ray C+(K,L(H)) = {R+f : f = 1{k0}x⊗x ∈ C(K,L(H)),0 6=

x ∈ H , k0 is an isolated point of K}.

Proof: Fix f = 1{k0}x ⊗ x ∈ C(K,L(H)). Let 0 6= g ∈ C+(K,L(H)) such

that f − g ∈ C+(K,L(H)). Then g ≤ f , so g(k) = 0 for k 6= k0. Moreover
0 ≤ g(k0) ≤ x ⊗ x. Hence g(k0) = αx ⊗ x where α ∈ (0, 1], i.e. g = αf and
f ∈ ext-ray C+(K,L(H)).
Let k0 be a not isolated point of K such that f(k0) 6= 0. Then there exists a

continuous function γ : K → [0, 1] with γ(k0) = 1 and γ(k1) = 0 for some k1 6= k0
such that f(k1) 6= 0. Put g = γf ∈ C+(K,L(H)). Then f − g ∈ C+(K,L(H))
and g 6= λf , λ ∈ R+, i.e. f do not generate the extreme ray.
If for two isolated points ki, i = 1, 2, f(ki) 6= 0, then by the analogous argu-

ments R+f /∈ ext-ray C+(K,L(H)).
If k0 is an isolated point of K and f(k0) is not of the form x ⊗ x (f(k0) do

not generate extreme ray in L+(H)). Then there exists 0 6= T ∈ L+(H) such
that f(k0) ± T ∈ C+(K,L(H)) and T 6= λf(k0), λ ∈ R+. For g = 1{k0}T ∈

C+(K,L(H)) we have f − g ∈ C+(K,L(H)) and g 6= λf , λ ∈ R+, i.e. f do not
generate the extreme ray, too. �

Theorem 4. If H is separable and a compact Hausdorff spaceK carries a strictly
positive measure then

exp B+(C(K,L(H))) = ext B+(C(K,L(H))).

Otherwise

exp B+(C(K,L(H))) = ∅.

Proof: Let H be separable and let µ be a strictly positive measure on K with
µ(K) = 1. We fix an orthonormal basis {ei}i∈I and a sequence of strictly positive
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reals αi such that
∑

i∈I αi = 1. Fix fo ∈ ext B+(C(K,L(H))). We define a
functional ξ on C(K,L(H)) by

ξ(g) =

∫

K

∑

i∈I

αiRe〈(2g(k)− I)ei, (2fo(k)− I)ei〉 dµ(k),

g ∈ B(C(K,L(H))). We have ξ(g) ≤ 1 = ξ(fo) for g ∈ B+(C(K,L(H))). Now
suppose that ξ(g) = 1 for some g ∈ B+(C(K,L(H))). Note that if 0 ≤ T ≤ I then
−I ≤ (2T − I) ≤ I and ‖2T − I‖ ≤ 1. We get 〈(2g(k)− I)ei, (2fo(k)− I)ei〉 = 1
µ-a.e. and (2g(k)− I)ei = (2fo(k)− I)ei. Hence (2g(k)− I) = (2fo(k)− I) and
g = fo, i.e. fo ∈ exp B+(C(K,L(H))).
Now suppose that a functional ξo exposes B+(C(K,L(H))) at fo belonging to

fo ∈ exp B+(C(K,L(H))). Obviously ‖fo(k)‖ = 0 or 1. Put K0 = {k ∈ K :
fo(k) = 0} and K1 = K \ K0. The sets K0, K1 are clopen.
Fix x ∈ S(H). We define a functional ν on C(K, R) by

ν(h) = ξo(h(fo − 1K0x⊗ x)), h ∈ C(K, R).

We claim that ν is strictly positive. Indeed, suppose to get a contradiction, that
there exists ho ∈ C(K, R) such that 0 ≤ ho ≤ 1, ho 6= 0, and ν(ho) ≤ 0. If
supp ho ⊂ K1 then hofo 6= 0, and ν(1) ≤ ν(1) − ν(ho) = ν(1 − ho) = ξo((1 −
ho)fo) − ξo(1K0x ⊗ x) < ξo(fo) − ξo(1K0x ⊗ x) = ν(1), which is impossible. It
follows that K1 carries a strictly positive measure.
If supp ho ⊂ K0 then ν(1) ≤ ν(1) − ν(ho) = ν(1 − ho) = ξo(fo + hox ⊗ x) −

ξo(1K0x⊗x) < ξo(fo)− ξo(1K0x⊗x) = ν(1), which is impossible. It follows that
K0 carries a strictly positive measure. Therefore if exp B+(C(K,L(H))) 6= ∅
then K carries a strictly positive measure.
Let {ei}i∈I be an orthonormal basis of H such that, {ei}i∈J , J ⊂ I, is the

orthonormal base of
⋂

k∈K Ker f(k). For L ⊂ I we denote by PL a projection on

lin {ei}i∈L. Consider now a function m on all subsets of I defined by

m(L) = ξo(foPL∩(I\J) − PL∩J ).

If i ∈ J then fo + ei ⊗ ei ∈ B+(C(K,L(H))) and ξo(fo + ei ⊗ ei) < ξo(fo).
Thus ξo(ei ⊗ ei) < 0 and m({i}) = ξo(−ei ⊗ ei) > 0. If i /∈ J then there exists
k ∈ K such that ei ∈ (Ker fo(k))

c i.e. fo(k)ei 6= 0 and foP{io} 6= 0. We have fo =

foP{io}+foPI\{io} and ξo(foPI\{io}) < ξo(fo). Hencem({io}) = ξo(foP{io}) > 0.

Using the same arguments we get that m(L) > 0 if L is a subset of J or L is a
subset of I \ J .
Thus the function m is finitely additive and strictly positive on the family of

all subsets of I. Therefore if exp B+(C(K,L(H))) 6= ∅ then I is countable and
H is separable. �
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Theorem 5. If dim H =∞ or card K =∞ then

dent B+(C(K,L(H))) = ∅.

Proof: Suppose that dim H = ∞. Fix f ∈ ext B+(C(K,L(H))) and k0 ∈ K.
Consider the case when dim IsDom f(k0) =∞. Let {ei}

∞
i=1 be orthonormal sys-

tem in IsDom f(k0). Let Pj be a projection on {ej}
⊥. Put fj = Pjf . Obviously

‖fj − f‖ ≥ ‖fj(k0) − f(k0)‖ = ‖ej ⊗ ej‖ = 1. We have ‖I − 1
n

∑n
i=1 Pi‖ =

‖ 1n
∑n

i=1 ei ⊗ ei‖ =
1
n and ‖f −

∑n
i=1 fi‖ ≤ ‖I − 1

n

∑n
i=1 Pi‖ =

1
n , i.e. f /∈

dent B+(C(K,L(H))).
Consider the case when dim Ker f(k0) =∞. Then for

g = I − f ∈ B+(C(K,L(H))) dim IsDom g = ∞, and we can apply the above
argument for g.
Now suppose that card K =∞.
Suppose that there exists a sequence {kn} of distinct points of K such that

limn kn = k0 and f(kn) 6= 0. We choose the sequence of continuous functions
γn : K → [0, 1] such that γn(kn) = 1 and supp γn1∩ supp γn2 = ∅ if n1 6= n2. Put
fj = (1− γj)fo ∈ B+(C(K,L(H))). Obviously ‖fj − f‖ ≥ ‖fj(kj)− f(kj)‖ = 1.

We have ‖f −
∑n

i=1 fi‖ ≤ ‖ 1n
∑n

i=1 hi‖ =
1
n , i.e. f /∈ dent B+(C(K,L(H))).

Finally if such sequence {kn} does not exist we can find a closed K1 ⊂ K
such that card K1 = ∞ and f(k) = 0 for all k ∈ K1. We choose the sequence
of continuous functions γn : K → [0, 1] such that ‖γn‖ = 1, supp γn ⊂ K1 and
supp γn1 ∩ supp γn2 = ∅ if n1 6= n2. Put fj = f + γjx ⊗ x ∈ B+(C(K,L(H))),
x ∈ S(H). Obviously ‖fj − f‖ ≥ ‖x ⊗ x‖ = 1. We have ‖f −

∑n
i=1 fi‖ ≤

‖ 1n
∑n

i=1 hi‖ =
1
n , i.e. f /∈ dent B+(C(K,L(H))). �

Theorem 6. If dim H < ∞ and card K < ∞ then

s-exp B+(C(K,L(H))) = ext B+(C(K,L(H))).

Proof: If dim H < ∞ or card K < ∞ then C(K,L(H)) is finite dimensional, so
B+(C(K,L(H))) is compact. Hence exposed and strongly exposed coincide. In
view of Theorem 4 we finish the proof. �

Remark. All the above theorems can be proven using the same arguments for
the space of compact operators K(H) instead of L(H).

Questions. In [6] and [7] it is shown that the unit ball and the positive part of
the unit ball is stable if dim H < ∞. Are B(L(H)) and B+(L(H)) stable for
infinite dimensional H?
In [8] it is presented an example of the extreme points of the unit ball of

continues operator-valued map into lp, 1 < p < ∞, p 6= 2 with non-extremal
values. What about extreme positive continuous maps into L(lp), 1 < p < ∞,
p 6= 2.
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[8] Grza̧ślewicz R., Extreme operator valued continuous maps, Arkiv för Matematik 29 (1991),
73–81.
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