Previous |  Up |  Next

Article

Keywords:
tightness; products; function spaces
Summary:
We observe the existence of a $\sigma$-compact, separable topological group $G$ and a countable topological group $H$ such that the tightness of $G$ is countable, but the tightness of $G\times H$ is equal to $\frak c$.
References:
[Arh1] Arhangel'skii A.V.: The frequency spectrum of a topological space and the product operation. Trans. Moscow Math. Soc. 3 (1981), 169-199.
[Arh2] Arhangel'skii A.V.: Topological Spaces of Functions. Kluwer Academic Publishers Dordrecht (1992).
[Kom] Kombarov A.P.: On a strengthening of collectionwise normality. 126 Abstracts of the Fifth Tyraspol Symp. on Gen. Topol. and its Appl. (1985), Štiinca Kišinev Russian.
[Law] Lawrence L.B.: Lindelöf spaces concentrated on Bernstein subsets of the real line. Proc. Amer. Math. Soc. (1992), 114 1 211-215. MR 1062832 | Zbl 0789.54007
[OT] Okunev O., Tamano K.: Lindelöf powers and products of function spaces. Proc. Amer. Math. Soc., to appear. MR 1353393 | Zbl 0858.54013
[Mal] Malykhin V.I.: On the tightness and the Suslin number of $\exp X$ and a product of spaces. Soviet. Math. Dokl. (1972), 13 496-499.
[Sha] Shakhmatov D.B.: Compact paces and their generalizations. 571-640 Recent Progress in General Topology M. Hušek and J. van Mill North-Holland Amsterdam (1992). MR 1229139
[Tod] Todorčević S.: Some applications of $S$ and $L$ combinatorics. Annals New York Acad. Sci. 705 (1993), 130-167. MR 1277886
Partner of
EuDML logo