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A remark on the tightness of products

Oleg Okunev

Abstract. We observe the existence of a σ-compact, separable topological group G and
a countable topological group H such that the tightness of G is countable, but the
tightness of G × H is equal to c.
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All topological spaces below are assumed Tychonoff (= completely regular
Hausdorff). The tightness t(X) of a space X is defined as the minimal infinite
cardinal τ such that for any A ⊂ X , the closure of A in X coincides with the
union of closures of all subsets B of A with |B| ≤ τ .
In 1972, Malykhin proved [Mal] that if X is compact, then for any space Y ,

t(X × Y ) = t(X)t(Y ). The question whether the same is true under weaker
assumptions on X was answered by Arhangel’skii in [Arh1] where he showed that
multiplication by a first countable space does not raise the tightness, but the
product of a countably tight space and a countable space may have uncountable
tightness. However, the question whether the equality t(X×Y ) = t(X)t(Y ) holds
if both X and Y (or even X × Y ) have good compactness properties (Lindelöf,
σ-compact or Lindelöf Σ-spaces) remained open. Shakhmatov [Sha] attributed
the question about Lindelöf Σ-spaces to Kombarov [Kom], and describes (quite
correctly) the question in the σ-compact case as “a kind of folklore question raised
from time to time at the Moscow topological seminar”.
In [Tod], Todorčević constructed two countably tight, σ-compact topological

groups whose product has uncountable tightness, thus answering the above ques-
tions in the negative. In this paper we improve slightly this result by making
the second factor countable. Our example involves no advanced combinatorics
(see [OT] for a straightforward construction of the underlying space X below). It
should be noted however that our groups are not Frechét-Urysohn, nor compactly
generated as in Todorčević’s example.

Theorem 1. There exist a separable, σ-compact topological group G and a

countable topological group H such that t(Gω) = ω and t(G × H) = c.

Proof: Given two spacesX and Y , we denote by Cp(X, Y ) the space of all contin-
uous functions from X to Y equipped with the topology of pointwise convergence
(see [Arh2]). We will be particularly interested in the case Y = 2 = {0, 1}. Note
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that for any family of spaces {Xγ : γ ∈ Γ }, there is a standard homeomorphism
between Cp(

⊕

{Xγ : γ ∈ Γ }, Z) and
∏

{Cp(Xγ , Z) : γ ∈ Γ }.
Let C = 2ω be the Cantor discontinuum; for a subset A of C, we denote by

C(A) the space obtained by retaining the original topology at all points of A and

declaring all points of C \ A isolated. It follows easily from Theorems 1 and 2 in
[Law] (see also [OT]) that there is a subset A of C such that the set B = C \ A
has cardinality c and all finite powers of the space X = C(A) is Lindelöf.

Let i : X → C be the natural bijection; we denote B0 = i−1(B). B0 is an
uncountable, discrete set in X .
Let C be the set of all clopen sets in C. Clearly, C is countable and for any

finite disjoint subsets F1 and F2 of C, F1 ⊂ U and F2 ∩ U = ∅ for some U ∈ C.
Assign to each pair of a finite set F ⊂ B and U ∈ C such that F ∩ U = ∅ the

function fF,U : X ⊕ B → 2 defined by the rule

fF,U (x) =

{

0 if x ∈ i−1(F ) or x ∈ i−1(U) or x ∈ B \ U ,

1 otherwise
and put S = { fF,U : F is a finite subset of B, U ∈ C and F ∩ U = ∅ }. Clearly,
S ⊂ Cp(X ⊕ B, 2).

Claim 1. The zero function 0 is a limit point (in Cp(X ⊕B, 2)) for S, but not
a limit point for any subset of S whose cardinality is less than c.

Indeed, a generic neighborhood of 0 in Cp(X ⊕ B, 2) is of the form O(K) =
{ f ∈ Cp(X⊕B, 2) : f |K = 0 } whereK is a finite set in X⊕B. Let K1 = K∩B0,
K2 = K ∩ (X \B0) and K3 = K∩B. Put F = (i(K1)∪K3), and find a set U ∈ C
so that i(K2) ⊂ U and U ∩ F = ∅; then fF,U is in S ∩ O(K) (note that always
fF,U 6= 0). Thus, 0 is a limit point for S.
Now suppose S1 is a subset of S of cardinality less than c. Then the set

M =
⋃

{F : fF,U ∈ S1 for some U ∈ C } has cardinality less than c; pick a point

x0 ∈ B \ M and put x1 = i−1(x0). Now for any f = fF,U ∈ M , we have either
f(x0) = 1 or f(x1) = 1, and O({x0, x1}) is a neighborhood of 0 disjoint with S1.

Claim 2. The set S is σ-compact.

We have S =
⋃

{ { fF,U : |F | ≤ n, F ∩ U = ∅ } : U ∈ C, n ∈ ω }, and each set

Sn,U = { fF,U : |F | ≤ n, F ∩ U = ∅ } is compact, because it is closed in 2X .

We have S ⊂ Cp(X ⊕ B, 2) ≃ Cp(X, 2) × Cp(B, 2); let S1 and S2 be the
projections of S on the factors Cp(X, 2) and Cp(B, 2), L a dense countable subset
of Cp(X, 2) (Cp(X, 2) is separable, because X admits a continuous bijection to
C, see Theorem I.1.5 in [Arh2]) and G and H be the subgroups of Cp(X, 2) and
Cp(B, 2) generated by S1 ∪L and S2. Clearly, H is countable, and G is separable
and σ-compact. Furthermore, G ⊂ Cp(X, 2), and since all finite powers of X are
Lindelöf, so are all finite powers of X × ω, and the tightness of Cp(X × ω, 2) =
Cp(X, 2)ω is countable by a theorem of Arhangel’skii and Pytkeev (see [Arh2,
II.1.1]), so the tightness of Gω is countable. The product of G and H contains
S ∪ {0}, so by Claim 1, the tightness of G × H is equal to c. �



A remark on the tightness of products 399

References

[Arh1] Arhangel’skii A.V., The frequency spectrum of a topological space and the product op-
eration, Trans. Moscow Math. Soc. 3 (1981), 169–199.

[Arh2] Arhangel’skii A.V., Topological Spaces of Functions, Kluwer Academic Publishers, Dor-
drecht, 1992.

[Kom] Kombarov A.P., On a strengthening of collectionwise normality, Abstracts of the Fifth

Tyraspol Symp. on Gen. Topol. and its Appl., Štiinca, Kǐsinev, 1985, pp. 126. (Russian)
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