Previous |  Up |  Next

Article

Keywords:
pseudomonotone mappings; integral equations; nonnegative solutions
Summary:
Existence results of nonnegative solutions of asymptotically linear, nonlinear integral equations are studied.
References:
[1] Amann H.: Fixed points of asymptotically linear maps in ordered Banach spaces. J. Functional Analysis 14 (1973), 162-171. MR 0350527 | Zbl 0263.47043
[2] Ambrosetti A., Badiale M.: The Dual Variational Principle and elliptic problems with discontinuous nonlinearities. J. Math. Anal. Appl. 140 (1989), 363-373. MR 1001862 | Zbl 0687.35033
[3] Askhabov S.N.: Integral equations of convolution type with power nonlinearity. Coll. Math. 62 (1991), 49-65. MR 1114619 | Zbl 0738.45003
[4] Berkovits J., Mustonen V.: An extension of Leray-Schauder degree and applications to nonlinear wave equations. Diff. Int. Equations 3 (1990), 945-963. MR 1059342 | Zbl 0724.47024
[5] Deimling K.: Nonlinear Functional Analysis. Springer-Verlag Berlin (1985). MR 0787404 | Zbl 0559.47040
[6] Fečkan M.: Critical points of asymptotically quadratic functions. Annales Polon. Math. LXI.1 (1995), 63-76. MR 1318318
[7] Fečkan M.: Ordinary differential equations with discontinuous nonlinearities. Atti Sem. Mat. Fis. Univ. Modena XLI (1993), 431-444. MR 1248009
[8] Kittilä A.: On the topological degree for a class of mappings of monotone type and applications to strongly nonlinear elliptic problems. Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 91 (1994). MR 1263099
[9] Krasnoselskii M.A.: Positive Solutions of Operator Equations. Noordhoff Groningen (1964). MR 0181881
[10] Nečas J.: Introduction to the Theory of Nonlinear Elliptic Equations. Teubner Leipzig (1983). MR 0731261
[11] Okrasiński W.: On a non-linear convolution equation occurring in the theory of water percolation. Annal. Polon. Math. 37 (1980), 223-229. MR 0587492
[12] Okrasiński W.: On the existence and uniqueness of nonnegative solutions of certain nonlinear convolution equation. Annal. Polon. Math. 36 (1979), 61-72. MR 0529307
[13] Petryshyn W.V.: Solvability of various boundary value problems for the equation $x''=$ $f(t,x,x',x'')-y$. Pacific J. Math. 122 (1986), 169-195. MR 0825230 | Zbl 0585.34020
[14] Santanulla J.: Existence of nonnegative solutions of a semilinear equation at resonance with linear growth. Proc. Amer. Math. Soc. 105 (1989), 963-971. MR 0964462
Partner of
EuDML logo