Previous |  Up |  Next

Article

Keywords:
function spaces; Kuratowski convergence; hyperspaces
Summary:
Let $X$ be a locally connected, $b$-compact metric space and $E$ a closed subset of $X$. Let $\Bbb G$ be the space of all continuous real-valued functions defined on some closed subsets of $E$. We prove the equivalence of the ${\tau_{_{a\!w}}}$ and ${\tau^c_{_{\!K}}}$ topologies on $\Bbb G$, where $\tau_{_{a\!w}}$ is the so called {\sl Attouch-Wets\/} topology, defined in terms of uniform convergence of distance functionals, and ${\tau^c_{_{\!K}}}$ is the topology of Kuratowski convergence on compacta.
References:
[1] Beer G.: On uniform convergence of continuous functions and topological convergence of sets. Can. Math. Bull. 26 (1983), 418-424. MR 0716581 | Zbl 0488.54007
[2] Beer G.: More on uniform convergence of continuous functions and topological convergence of sets. Can. Math. Bull. 28 (1985), 52-59. MR 0778261
[3] Beer G.: Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance. Proc. Amer. Math. Soc. 95 (1985), 653-658. MR 0810180 | Zbl 0594.54007
[4] Beer G., Diconcilio A.: Uniform continuity on bounded sets and the Attouch-Wets topology. Proc. Am. Math. Soc. 112/11 (1991), 235-243. MR 1033956
[5] Brandi P., Ceppitelli R.: Esistenza, unicità e dipendenza continua per equazioni differenziali in una struttura ereditaria. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363. MR 0937975
[6] Brandi P., Ceppitelli R.: Existence, uniqueness and continuous dependence for hereditary differential equations. J. Diff. Equations 81 (1989), 317-339. MR 1016086 | Zbl 0709.34062
[7] Brandi P., Ceppitelli R.: A new graph topology. Connections with the compact-open topology. to appear. MR 1379407 | Zbl 0836.54010
[8] Holá L.: The Attouch-Wets topology and a characterization of normable linear spaces. Bull. Austral. Math. Soc. 44 (1991), 11-18. MR 1120389
[9] Kelley J.L.: General Topology. Van Nostrand Reinhold Company (1955). MR 0070144 | Zbl 0066.16604
[10] Kuratowski K.: Topology. Academic Press New York (1966). MR 0217751 | Zbl 0163.17002
[11] Mosco U.: Convergence of convex sets and solutions of variational inequalities. Advances in Mathematics 3 (1969), 510-585. MR 0298508
[12] Naimpally S.A.: Graph topology for function spaces. Trans. Amer. Math. Soc. 123 (1966), 267-272. MR 0192466 | Zbl 0151.29703
[13] Naimpally S.A.: Hyperspaces and function spaces. Questions and Answers Gen. Topology 9 (1991), 33-60. MR 1088448 | Zbl 0717.54005
[14] Sampalmieri R.: Kuratowski convergence on compact sets. Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390. MR 1200296 | Zbl 0770.54016
Partner of
EuDML logo