Article
Keywords:
function spaces; Kuratowski convergence; hyperspaces
Summary:
Let $X$ be a locally connected, $b$-compact metric space and $E$ a closed subset of $X$. Let $\Bbb G$ be the space of all continuous real-valued functions defined on some closed subsets of $E$. We prove the equivalence of the ${\tau_{_{a\!w}}}$ and ${\tau^c_{_{\!K}}}$ topologies on $\Bbb G$, where $\tau_{_{a\!w}}$ is the so called {\sl Attouch-Wets\/} topology, defined in terms of uniform convergence of distance functionals, and ${\tau^c_{_{\!K}}}$ is the topology of Kuratowski convergence on compacta.
References:
[1] Beer G.:
On uniform convergence of continuous functions and topological convergence of sets. Can. Math. Bull. 26 (1983), 418-424.
MR 0716581 |
Zbl 0488.54007
[2] Beer G.:
More on uniform convergence of continuous functions and topological convergence of sets. Can. Math. Bull. 28 (1985), 52-59.
MR 0778261
[3] Beer G.:
Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance. Proc. Amer. Math. Soc. 95 (1985), 653-658.
MR 0810180 |
Zbl 0594.54007
[4] Beer G., Diconcilio A.:
Uniform continuity on bounded sets and the Attouch-Wets topology. Proc. Am. Math. Soc. 112/11 (1991), 235-243.
MR 1033956
[5] Brandi P., Ceppitelli R.:
Esistenza, unicità e dipendenza continua per equazioni differenziali in una struttura ereditaria. Atti Sem. Mat. Fis. Univ. Modena 35 (1987), 357-363.
MR 0937975
[6] Brandi P., Ceppitelli R.:
Existence, uniqueness and continuous dependence for hereditary differential equations. J. Diff. Equations 81 (1989), 317-339.
MR 1016086 |
Zbl 0709.34062
[7] Brandi P., Ceppitelli R.:
A new graph topology. Connections with the compact-open topology. to appear.
MR 1379407 |
Zbl 0836.54010
[8] Holá L.:
The Attouch-Wets topology and a characterization of normable linear spaces. Bull. Austral. Math. Soc. 44 (1991), 11-18.
MR 1120389
[11] Mosco U.:
Convergence of convex sets and solutions of variational inequalities. Advances in Mathematics 3 (1969), 510-585.
MR 0298508
[12] Naimpally S.A.:
Graph topology for function spaces. Trans. Amer. Math. Soc. 123 (1966), 267-272.
MR 0192466 |
Zbl 0151.29703
[13] Naimpally S.A.:
Hyperspaces and function spaces. Questions and Answers Gen. Topology 9 (1991), 33-60.
MR 1088448 |
Zbl 0717.54005
[14] Sampalmieri R.:
Kuratowski convergence on compact sets. Atti Sem. Mat. Fis. Univ. Modena 39 (1992), 381-390.
MR 1200296 |
Zbl 0770.54016