[1] Arhangel'skii A.V.:
On the cardinality of bicompacta satisfying the first axiom of countability. Soviet Math. Dokl. 10 (1969), 951-955.
MR 0119188
[2] Arhangel'skii A.V.:
Structure and classification of topological spaces and cardinal invariants. Russian Math. Surveys 33 (1978), 33-96.
MR 0526012
[3] Arhangel'skii A.V.:
Theorems on the cardinality of families of sets in compact Hausdorff spaces. Soviet Math. Dokl. 17:1 (1976), 213-217.
MR 0405327
[4] Arhangel'skii A.V.:
A theorem on cardinality. Russ. Math. Surveys 34:4 (1979), 153-154.
MR 0548421
[5] Arhangel'skii A.V., Hamdi M.M. Genedi: The beginnings of the Theory of Relative Topological Properties. p. 3-48 in: General Topology. Spaces and Functions, Izd. MGU, Moscow, 1989 (in Russian).
[6] Arhangel'skii A.V.:
$C_p$-Theory. in: M. Hušek and J. van Mill, Editors, Chapter 1, p. 1-56, North-Holland, Amsterdam, 1992.
Zbl 0932.54015
[7] Arhangel'skii V.A.: Relative compactness and networks. Master Thesis, Moscow State University, (1994), Preprint, p. 1-4, (in Russian).
[8] Bell M., Ginsburg J., Woods G.:
Cardinal inequalities for topological spaces involving the weak Lindelöf number. Pacific J. Math. 79 (1978), 37-45.
MR 0526665
[9] Burke D.K., Hodel R.E.:
The number of compact subsets of a topological space. Proc. Amer. Math. Soc. 58 (1976), 363-368.
MR 0418014 |
Zbl 0335.54005
[10] Charlesworth A.:
On the cardinality of a topological space. Proc. Amer. Math. Soc. 66 (1977), 138-142.
MR 0451184 |
Zbl 0364.54004
[11] Corson H.H., Michael E.:
Metrization of certain countable unions. Illinois J. Math. 8 (1964), 351-360.
MR 0170324
[12] Dow A., Vermeer J.:
An example concerning the property of a space being Lindelöf in another. Topology and Appl. 51 (1993), 255-260.
MR 1237391 |
Zbl 0827.54014
[13] Engelking R.:
General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989.
MR 1039321 |
Zbl 0684.54001
[14] Fedorchuk V.V.:
On the cardinality of hereditarily separable compact Hausdorff spaces. Soviet Math. Dokl. 16 (1975), 651-655.
Zbl 0331.54029
[15] Ginsburg J., Woods G.:
A cardinal inequality for topological spaces involving closed discrete sets. Proc. Amer. Math. Soc. 64 (1977), 357-360.
MR 0461407 |
Zbl 0398.54002
[16] Grothendieck A.:
Criteres de compacticite dans les espaces fonctionnels genereaux. Amer. J. Math. 74 (1952), 168-186.
MR 0047313
[17] Gryzlow A.A.: Two theorems on the cardinality of topological spaces. Soviet Math. Dokl. 21 (1980), 506-509.
[18] Hajnal A., Juhász I.:
Discrete subspaces of topological spaces. Indag. Math. 29 (1967), 343-356.
MR 0229195
[19] Hodel R.E.:
A technique for proving inequalities in cardinal functions. Topology Proc. 4 (1979), 115-120.
MR 0583694
[20] Hodel R.E.:
Cardinal Functions, 1. in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, 1-62, North-Holland, Amsterdam, 1984.
MR 0776620
[21] Hodel R.E.:
Combinatorial set theory and cardinal function inequalities. Proc. Amer. Math. Soc. 111:2 (1991), 567-575.
MR 1039531 |
Zbl 0713.54007
[22] Mischenko A.: Spaces with point countable bases. Soviet Math. Dokl. 3 (1962), 855-858.
[23] Pol R.:
Short proofs of two theorems on cardinality of topological spaces. Bull. Acad. Polon. Sci. 22 (1974), 1245-1249.
MR 0383333 |
Zbl 0295.54004
[24] Ranchin D.V.:
On compactness modulo an ideal. Dokl. AN SSSR 202 (1972), 761-764 (in Russian).
MR 0296899
[25] Shapirovskij B.E.: On discrete subspaces of topological spaces; weight, tightness and Souslin number. Soviet Math. Dokl. 13 (1972), 215-219.
[26] Shapirovskij B.E.:
Canonical sets and character. Density and weight in compact spaces. Soviet Math. Dokl. 15 (1974), 1282-1287.
Zbl 0306.54012
[27] Stephenson R.M., Jr.:
Initially $\kappa $-compact and related spaces. in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 13, 603-632, North-Holland, Amsterdam, 1984.
MR 0776632 |
Zbl 0588.54025
[28] van Douwen Eric K.:
Applications of maximal topologies. Topol. and Appl. 51:2 (1993), 125-139.
MR 1229708 |
Zbl 0845.54028