Previous |  Up |  Next

Article

Keywords:
Lindelöf space; Souslin number; spread; extent; pseudocharacter; relative cardinal invariant
Summary:
Relative versions of many important theorems on cardinal invariants of topological spaces are formulated and proved on the basis of a general technical result, which provides an algorithm for such proofs. New relative cardinal invariants are defined, and open problems are discussed.
References:
[1] Arhangel'skii A.V.: On the cardinality of bicompacta satisfying the first axiom of countability. Soviet Math. Dokl. 10 (1969), 951-955. MR 0119188
[2] Arhangel'skii A.V.: Structure and classification of topological spaces and cardinal invariants. Russian Math. Surveys 33 (1978), 33-96. MR 0526012
[3] Arhangel'skii A.V.: Theorems on the cardinality of families of sets in compact Hausdorff spaces. Soviet Math. Dokl. 17:1 (1976), 213-217. MR 0405327
[4] Arhangel'skii A.V.: A theorem on cardinality. Russ. Math. Surveys 34:4 (1979), 153-154. MR 0548421
[5] Arhangel'skii A.V., Hamdi M.M. Genedi: The beginnings of the Theory of Relative Topological Properties. p. 3-48 in: General Topology. Spaces and Functions, Izd. MGU, Moscow, 1989 (in Russian).
[6] Arhangel'skii A.V.: $C_p$-Theory. in: M. Hušek and J. van Mill, Editors, Chapter 1, p. 1-56, North-Holland, Amsterdam, 1992. Zbl 0932.54015
[7] Arhangel'skii V.A.: Relative compactness and networks. Master Thesis, Moscow State University, (1994), Preprint, p. 1-4, (in Russian).
[8] Bell M., Ginsburg J., Woods G.: Cardinal inequalities for topological spaces involving the weak Lindelöf number. Pacific J. Math. 79 (1978), 37-45. MR 0526665
[9] Burke D.K., Hodel R.E.: The number of compact subsets of a topological space. Proc. Amer. Math. Soc. 58 (1976), 363-368. MR 0418014 | Zbl 0335.54005
[10] Charlesworth A.: On the cardinality of a topological space. Proc. Amer. Math. Soc. 66 (1977), 138-142. MR 0451184 | Zbl 0364.54004
[11] Corson H.H., Michael E.: Metrization of certain countable unions. Illinois J. Math. 8 (1964), 351-360. MR 0170324
[12] Dow A., Vermeer J.: An example concerning the property of a space being Lindelöf in another. Topology and Appl. 51 (1993), 255-260. MR 1237391 | Zbl 0827.54014
[13] Engelking R.: General Topology. Sigma Series in Pure Mathematics, 6, Heldermann, Berlin, revised ed., 1989. MR 1039321 | Zbl 0684.54001
[14] Fedorchuk V.V.: On the cardinality of hereditarily separable compact Hausdorff spaces. Soviet Math. Dokl. 16 (1975), 651-655. Zbl 0331.54029
[15] Ginsburg J., Woods G.: A cardinal inequality for topological spaces involving closed discrete sets. Proc. Amer. Math. Soc. 64 (1977), 357-360. MR 0461407 | Zbl 0398.54002
[16] Grothendieck A.: Criteres de compacticite dans les espaces fonctionnels genereaux. Amer. J. Math. 74 (1952), 168-186. MR 0047313
[17] Gryzlow A.A.: Two theorems on the cardinality of topological spaces. Soviet Math. Dokl. 21 (1980), 506-509.
[18] Hajnal A., Juhász I.: Discrete subspaces of topological spaces. Indag. Math. 29 (1967), 343-356. MR 0229195
[19] Hodel R.E.: A technique for proving inequalities in cardinal functions. Topology Proc. 4 (1979), 115-120. MR 0583694
[20] Hodel R.E.: Cardinal Functions, 1. in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 1, 1-62, North-Holland, Amsterdam, 1984. MR 0776620
[21] Hodel R.E.: Combinatorial set theory and cardinal function inequalities. Proc. Amer. Math. Soc. 111:2 (1991), 567-575. MR 1039531 | Zbl 0713.54007
[22] Mischenko A.: Spaces with point countable bases. Soviet Math. Dokl. 3 (1962), 855-858.
[23] Pol R.: Short proofs of two theorems on cardinality of topological spaces. Bull. Acad. Polon. Sci. 22 (1974), 1245-1249. MR 0383333 | Zbl 0295.54004
[24] Ranchin D.V.: On compactness modulo an ideal. Dokl. AN SSSR 202 (1972), 761-764 (in Russian). MR 0296899
[25] Shapirovskij B.E.: On discrete subspaces of topological spaces; weight, tightness and Souslin number. Soviet Math. Dokl. 13 (1972), 215-219.
[26] Shapirovskij B.E.: Canonical sets and character. Density and weight in compact spaces. Soviet Math. Dokl. 15 (1974), 1282-1287. Zbl 0306.54012
[27] Stephenson R.M., Jr.: Initially $\kappa $-compact and related spaces. in: Handbook of Set-theoretic Topology, Editors: Kunen K. and J.E. Vaughan, Chapter 13, 603-632, North-Holland, Amsterdam, 1984. MR 0776632 | Zbl 0588.54025
[28] van Douwen Eric K.: Applications of maximal topologies. Topol. and Appl. 51:2 (1993), 125-139. MR 1229708 | Zbl 0845.54028
Partner of
EuDML logo