Previous |  Up |  Next

Article

Keywords:
reproducing kernel Hilbert space; random measure; invariance principle; $\varphi$-mixing
Summary:
Invariance principle in $L^2(0,1)$ is studied using signed random measures. This approach to the problem uses an explicit isometry between $L^2(0,1)$ and a reproducing kernel Hilbert space giving a very convenient setting for the study of compactness and convergence of the sequence of Donsker functions. As an application, we prove a $L^2(0,1)$ version of the invariance principle in the case of $\varphi$-mixing random variables. Our result is not available in the $D(0,1)$-setting.
References:
[1] Billingsley P.: Convergence of probability measures. Wiley, 1968. MR 0233396 | Zbl 0944.60003
[2] Berlinet A.: Espaces autoreproduisants et mesure empirique, méthodes splines en estimation fonctionnelle. Thèse 3$^{eme}$ cycle, Lille, 1980.
[3] Davydov Y.: Convergence of distributions generated by stationary stochastic processes. Theory Probab. Appl. 13 (1968), 691-696. Zbl 0181.44101
[4] Guilbart C.: Étude des produits scalaires sur l'espace des mesures. Estimation par projection. Tests à noyaux. Thèse d'Etat, Lille, 1978.
[5] Herrndorf N.: The invariance principle for $\varphi$-mixing sequences. Z. Wahrsch. verw. Gebiete 63 (1983), 97-108. MR 0699789
[6] Ibragimov I.A.: Some limit theorems for stationary processes. Theory Probability Appl. 7 (1962), 349-382. MR 0148125 | Zbl 0119.14204
[7] Jacob P.: Private communication.
[8] Oliveira P.E.: Invariance principles in $L^2(0,1)$. Comment. Math. Univ. Carolinae 31:2 (1990), 357-366. MR 1077906
[9] Parthasarathy K.R.: Probability Measures on Metric Spaces. Academic Press, 1967. MR 0226684
[10] Peligrad M.: An invariance principle for $\varphi$-mixing sequences. Ann. Probab. 13 (1985), 1304-1313. MR 0806227
[11] Philipp W.: Invariance principles for independent and weakly dependent random variables. Dependence in probability and statistics (Oberwolfach, 1985), 225-268, Progr. Probab. Statist., 11, Birkhauser Boston, Boston, MA, 1986. MR 0899992 | Zbl 0614.60027
[12] Samur J.D.: On the invariance principle for stationary $\varphi$-mixing triangular arrays with infinitely divisible limits. Probab. Th. Rel. Fields 75 (1987), 245-259. MR 0885465
[13] Suquet Ch.: Une topologie pré-hilbertienne sur l'espace des mesures à signe bornées. Pub. Inst. Stat. Univ. Paris XXXV (1990), 51-77. MR 1745002
[14] Suquet Ch.: Relecture des critères de relative compacité d'une famille de probabilités sur un espace de Hilbert. Pub. IRMA 28 (1992), III, Lille.
[15] Suquet Ch.: Convergences stochastiques de suites de mesures aléatoires à signe considérées comme variables aléatoires hilbertiennes. Pub. Inst. Stat. Univ. Paris XXXVII 1-2 (1993), 71-99. MR 1743969
[16] Utev S.A.: On the central limit theorem for $\varphi$-mixing arrays of random variables. Theory Probab. Appl. 35:1 (1990), 131-139. MR 1050059
Partner of
EuDML logo