Previous |  Up |  Next

Article

Keywords:
fixed point; lower semicontinuous; open graph; open convex; Hausdorff topological vector space
Summary:
In this paper, we will give a new fixed point theorem for lower semicontinuous multimaps in a Hausdorff topological vector space.
References:
[1] Ding X.P., Kim W.K., Tan K.K.: A selection theorem and its applications. Bull. Austral. Math. Soc. 46 (1992), 205-212. MR 1183778 | Zbl 0762.47030
[2] Idzik A.: Approximative continuous selections and approximative fixed points for convex set-valued functions. preprint, 1991.
[3] Istratescu V.I.: Fixed Point Theory. D. Reidel Pub. Co., 1981. MR 0620639 | Zbl 0465.47035
[4] Park S.: The Brouwer and Schauder fixed point theorems for spaces having certain contractible subsets. Bull. Kor. Math. Soc. 30 (1993), 83-89. MR 1217373 | Zbl 0826.54032
[5] Rassias T.M.: On fixed point theory in non-linear analysis. Tamkang J. Math. 8 (1977), 233-237. MR 0510168 | Zbl 0394.47030
[6] Rudin W.: Functional Analysis. McGraw-Hill, 1973. MR 0365062 | Zbl 0867.46001
[7] Tian G.: Generalizations of the FKKM theorem and the Ky Fan minimax inequality, with applications to maximal elements, price equilibrium, and complementarity. J. Math. Anal. Appl. 170 (1992), 457-471. MR 1188565 | Zbl 0767.49007
[8] Toussaint S.: On the existence of equilibria in economies with infinitely many commodities and without ordered preferences. J. Econom. Theory 33 (1984), 98-115. MR 0748029 | Zbl 0543.90016
Partner of
EuDML logo