Previous |  Up |  Next

Article

Keywords:
strongly smooth Banach space; mildly nonlinear complementarity problem
Summary:
We prove a result for the existence and uniqueness of the solution for a class of mildly nonlinear complementarity problem in a uniformly convex and strongly smooth Banach space equipped with a semi-inner product. We also get an extension of a nonlinear complementarity problem over an infinite dimensional space. Our last results deal with the existence of a solution of mildly nonlinear complementarity problem in a reflexive Banach space.
References:
[1] Bazaraa M.S., Goode J.J., Nashed M.Z.: A nonlinear complementarity problem in mathematical programming in Banach spaces. Proc. Amer. Math. Soc. 35 (1972), 165-170. MR 0300163
[2] Browder F.E.: Nonlinear monotone operators and convex sets in Banach spaces. Bull. Amer. Math. Soc. 71 (1965), 780-785. MR 0180882 | Zbl 0138.39902
[3] Edelstein M.: On nearest points of sets in uniformly convex Banach spaces. J. London Math. Soc. 43 (1968), 375-377. MR 0226364 | Zbl 0183.40403
[3] Edelstein M.: On fixed and periodic points under contractive mappings. J. London Math. Soc. 37 (1962), 74-79. MR 0133102 | Zbl 0113.16503
[5] Giles J.R.: Classes of semi-inner product spaces. Trans. Amer. Math. Soc. 129 (1967), 436-446. MR 0217574 | Zbl 0157.20103
[6] Lumer G.: Semi-inner product spaces. Trans. Amer. Math. Soc. 100 (1969), 29-43. MR 0133024
[7] Nanda S.: A non-linear complementarity problem in semi-inner product space. Rendiconti di Matematica 1 (1982), 167-171. MR 0663723
[8] Nanda S., Nanda S.: On stationary points and the complementarity problem. Bull. Austral. Math. Soc. 21 (1980), 351-356. MR 0585193
[9] Nath B., Lal S.N., Mukerjee R.N.: A generalized non-linear complementarity problem in semi-inner product space. Indian J. Pure Appl. Math. 21:2 (1990), 140-143. MR 1041934
[10] Noor M.A.: On the non-linear complementarity problem. J. Math. Anal. Appl. 123 (1987), 455-460.
[11] Noor M.A.: Mildly non-linear variational inequalities. Math. Anal. Numer. Theory Approx. 24 (1982), 99-110. MR 0692191
[12] Noor M.A.: Generalized quasi complementarity problems. J. Math. Anal. Appl. 120 (1986), 321-327.
Partner of
EuDML logo