Previous |  Up |  Next

Article

Keywords:
multifunctions; weak semi-Carathéodory multifunctions; product weakly \linebreak measurable; superpositionally weakly measurable
Summary:
It is shown that product weakly measurable lower weak semi-Carathéodory multifunction is superpositionally measurable.
References:
[1] Berge Cl.: Topological spaces. Oliver Boyd Edinbourgh-London (1963). Zbl 0114.38602
[2] de Blasi F.S., Myjak J.: On continuous approximations for multifunctions. Pacific J. Math. 123 No 1 (1986), 9-31. MR 0834135 | Zbl 0595.47037
[3] Castaing Ch., Valadier M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin, 1987. MR 0467310 | Zbl 0346.46038
[4] Himmelberg C.J.: Measurable relations. Fundam. Math. 87 (1975), 53-72. MR 0367142 | Zbl 0296.28003
[5] Klein E., Thompson A.C.: Theory of Correspondences. Wiley-Interscience New York (1984). MR 0752692 | Zbl 0556.28012
[6] Nowak A.: Random differential inclusions; measurable selection approach. Ann. Polon. Math. 49 (1989), 291-296. MR 0997521 | Zbl 0674.60062
[7] Papageorgiou N.S.: On measurable multifunctions with application to random multivalued equations. Math. Japonica 32 (1987), 437-464. MR 0914749
[8] Spakowski A.: On superpositionally measurable multifunctions. Acta Univ. Carol., Math. Phys. 30 No 2 (1989), 149-151. MR 1046461 | Zbl 0705.28003
[9] Wagner D.H.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
[10] Zygmunt W.: On superpositionally measurable semi-Carathéodory multifunctions. Comment. Math. Univ. Carolinae 33 (1992), 73-74. MR 1173749 | Zbl 0756.28008
Partner of
EuDML logo