Article
Keywords:
multifunctions; weak semi-Carathéodory multifunctions; product weakly \linebreak measurable; superpositionally weakly measurable
Summary:
It is shown that product weakly measurable lower weak semi-Carathéodory multifunction is superpositionally measurable.
References:
[1] Berge Cl.:
Topological spaces. Oliver Boyd Edinbourgh-London (1963).
Zbl 0114.38602
[2] de Blasi F.S., Myjak J.:
On continuous approximations for multifunctions. Pacific J. Math. 123 No 1 (1986), 9-31.
MR 0834135 |
Zbl 0595.47037
[3] Castaing Ch., Valadier M.:
Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics 580, Springer-Verlag, Berlin, 1987.
MR 0467310 |
Zbl 0346.46038
[6] Nowak A.:
Random differential inclusions; measurable selection approach. Ann. Polon. Math. 49 (1989), 291-296.
MR 0997521 |
Zbl 0674.60062
[7] Papageorgiou N.S.:
On measurable multifunctions with application to random multivalued equations. Math. Japonica 32 (1987), 437-464.
MR 0914749
[8] Spakowski A.:
On superpositionally measurable multifunctions. Acta Univ. Carol., Math. Phys. 30 No 2 (1989), 149-151.
MR 1046461 |
Zbl 0705.28003
[9] Wagner D.H.:
Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903.
MR 0486391 |
Zbl 0407.28006
[10] Zygmunt W.:
On superpositionally measurable semi-Carathéodory multifunctions. Comment. Math. Univ. Carolinae 33 (1992), 73-74.
MR 1173749 |
Zbl 0756.28008