Article
Keywords:
parabolic problem; a-posteriori error estimate
Summary:
The aim of the paper is to derive a method for the construction of a-posteriori error estimate to approximate solutions to parabolic initial-boundary value problems. The computation of the suggested error bound requires only the computation of a finite number of systems or linear algebraic equations. These systems can be solved parallelly. It is proved that the suggested a-posteriori error estimate tends to zero if the approximation tends to the true solution.
References:
[1] Eriksson K., Johnson C.:
Adaptive finite element methods for parabolic problems I: A linear model problem. SIAM J. Numer. Anal. 28 (1991), 43-77.
MR 1083324 |
Zbl 0732.65093
[2] Gajewski H., Gröger K.:
Konjugierte Probleme und a-posteriori Fehlerabschätzungen. Math. Nachrichten 73 (1976), 315-333.
MR 0435959
[3] Gajewski H., Gröger K., Zacharias K.:
Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie -Verlag Berlin, 1974 (Russian Mir Moskva 1978).
MR 0636412
[4] Weisz J.:
A posteriori error estimate of approximate solutions to a mildly nonlinear elliptic boundary value problem. Commentationes Math. Univ. Carolinae 31 (1990), 315-322.
MR 1077902 |
Zbl 0709.65074