Previous |  Up |  Next

Article

Keywords:
semiprime ideal; prime ideal; congruence of a lattice; allele; lattice polynomial; meet-irreducible element; kernel; forbidden exterior quotients; $D$-radical; prime radical
Summary:
The author studies some characteristic properties of semiprime ideals. The semiprimeness is also used to characterize distributive and modular lattices. Prime ideals are described as the meet-irreducible semiprime ideals. In relatively complemented lattices they are characterized as the maximal semiprime ideals. $D$-radicals of ideals are introduced and investigated. In particular, the prime radicals are determined by means of $\hat C$-radicals. In addition, a necessary and sufficient condition for the equality of prime radicals is obtained.
References:
[1] Beran L.: Orthomodular Lattices (Algebraic Approach). Reidel Dordrecht (1985). MR 0784029 | Zbl 0558.06008
[2] Beran L.: Distributivity in finitely generated orthomodular lattices. Comment. Math. Univ. Carolinae 28 (1987), 433-435. MR 0912572 | Zbl 0624.06008
[3] Beran L.: On semiprime ideals in lattices. J. Pure Appl. Algebra 64 (1990), 223-227. MR 1061299 | Zbl 0703.06003
[4] Beran L.: On the rhomboidal heredity in ideal lattices. Comment. Math. Univ. Carolinae 33 (1992), 723-726. MR 1240194 | Zbl 0782.06007
[5] Birkhoff G.: Lattice Theory. 3rd ed., American Math. Soc. Colloq. Publ., vol. XXV, Providence, 1967. MR 0227053 | Zbl 0537.06001
[6] Chevalier G.: Semiprime ideals in orthomodular lattices. Comment. Math. Univ. Carolinae 29 (1988), 379-386. MR 0957406 | Zbl 0655.06008
[7] Dubreil-Jacotin M.L., Lesieur L., Croisot R.: Leçons sur la théorie des treillis, des structures algébriques ordonnées et des treillis géometriques. Gauthier-Villars Paris (1953). MR 0057838 | Zbl 0051.26005
[8] Rav Y.: Semiprime ideals in general lattices. J. Pure Appl. Algebra 56 (1989), 105-118. MR 0979666 | Zbl 0665.06006
Partner of
EuDML logo