Previous |  Up |  Next

Article

Keywords:
$M$-mapping; topological group; Maltsev space; $\aleph_0$-cellularity
Summary:
We consider $M$-mappings which include continuous mappings of spaces onto topological groups and continuous mappings of topological groups elsewhere. It is proved that if a space $X$ is an image of a product of Lindelöf $\Sigma$-spaces under an $M$-mapping then every regular uncountable cardinal is a weak precaliber for $X$, and hence $ X$ has the Souslin property. An image $X$ of a Lindelöf space under an $M$-mapping satisfies $cel_{\omega}X\le2^{\omega}$. Every $M$-mapping takes a $\Sigma(\aleph_0)$-space to an $\aleph_0$-cellular space. In each of these results, the cellularity of the domain of an $M$-mapping can be arbitrarily large.
References:
[1] ArhangelskiĭA.V.: Factorization theorems and function spaces: stability and monolithicity. Soviet Math. Dokl. 26 (1982), 177-181.
[2] ArhangelskiĭA.V., Ranchin D.V.: On dense subspaces of topological products and properties related with final compactness (in Russian). Vestnik Mosc. Univ. 1982, No.6, 21-28.
[3] Engelking R.: On functions defined on cartesian products. Fund. Math. 59 (1966), 221-231. MR 0203697 | Zbl 0158.41203
[4] Hušek M.: Productivity of properties of topological groups. Topology Appl. 44 (1992), 189-196. MR 1173257
[5] Juhász I.: Cardinal Functions in Topology. Math. Centrum Tracts 34, Amsterdam, 1971. MR 0340021
[6] Kombarov A.P., Malykhin V.I.: On $\Sigma$-products (in Russian). Dokl. AN SSSR 213 (1973), 774-776. MR 0339073
[7] Maltsev A.I.: To the general theory of algebraic systems (in Russian). Mat. Sb. 35 (1954), 3-20. MR 0065533
[8] Nagami K.: $\Sigma$-spaces. Fund. Math. 65 (1969), 169-192. MR 0257963 | Zbl 0181.50701
[9] Pasynkov B.A.: On the relative cellularity of Lindelöf subspaces of topological groups. Topol. Appl., to appear. MR 1278026 | Zbl 0803.54016
[10] Tkačenko M.G.: Some results on inverse spectra. I. Comment. Math. Univ. Carolinae 22 (1981), 621-633. MR 0633589
[11] Tkačenko M.G.: On the Souslin property in free topological groups over compacta (in Russian). Matem. Zametki 34 (1983), 601-607. MR 0722229
[12] Tkačenko M.G.: On mappings improving properties of their images (in Russian). Uspekhi Matem. Nauk 48 (1993), 187-188.
[13] Tkačenko M.G.: $M$-spaces and the cellularity of spaces. Topology Appl., to appear.
[14] Todorčević S.: Remarks on cellularity in products. Compositio Math. 57 (1986), 357-372. MR 0829326
[15] Todorčević S.: Cellularity of topological groups. Handwritten notes.
[16] UspenskiĭV.V.: Topological group generated by a Lindelöf $\Sigma$-space has the Souslin property. Soviet Math. Dokl. 26 (1982), 166-169.
[17] UspenskiĭV.V.: On continuous images of Lindelöf topological groups (in Russian, translated in English). Dokl. AN SSSR 285 (1985), 824-827. MR 0821360
[18] UspenskiĭV.V.: The Maltsev operation on countably compact spaces. Comment. Math. Univ. Carolinae 30 (1989), 395-402. MR 1014140
Partner of
EuDML logo