Previous |  Up |  Next

Article

Keywords:
fixed point index; admissible sets; compact reducible and $(\varphi, \gamma )$-condensing operators; $\varphi $-measure of noncompactness
Summary:
We introduce the relative fixed point index for a class of noncompact operators on special subsets of non locally convex spaces.
References:
[1] Borisovitch Iu.G.: On the relative rotation of compact vector fields in linear spaces (in Russian). Trudy seminara pro funkc. analyzu 12 (1969), 3-27 (Voronesh).
[2] Hadzic O.: Fixed Point Theory in Topological Vector Spaces. Novi Sad, 1984. MR 0789224 | Zbl 0576.47030
[3] Hadzic O.: Fixed point theorems for multivalued mappings in not necessarily locally convex topological vector spaces. Zb. rad. Prir.-mat. fak. Novi Sad, ser. mat. 14 (1984). MR 0850239 | Zbl 0595.47044
[4] Hadzic O.: Some properties of measures of noncompactness in paranormed spaces. Proc. Amer. Math. Soc. 102 (1988), 843-849. MR 0934854 | Zbl 0653.47034
[5] Hahn S.: Fixpunktsätze für limeskompakte mengenwertige Abbildungen in nicht notwendig lokalkonvexen topologischen Vektorräumen. Comment. Math. Univ. Carolinae 27 (1986), 189-204. MR 0843430 | Zbl 0601.47048
[6] Hahn S., Riedrich T.: Der Abbildungsgrad kompakter Vektorfelder in nicht notwendig lokalkonvexen topologischen Vektorräumen. Wiss. Z. Techn. Univ. Dresden 22 (1973), 37-42. MR 0320835 | Zbl 0264.47044
[7] Jerofsky T.: Zur Fixpunkttheorie mengenwertiger Abbildungen. Dissertation, TU Dresden, 1983.
[8] Kaballow W.: Zum Abbildungsgrad in Hausdorffschen topologischen Vektorräumen. Manuscripta Math. 8 (1973), 209-216. MR 0358461
[9] Kaniok L.: On measures of noncompactness in general topological vector spaces. Comment. Math. Univ. Carolinae 31 (1990), 479-487. MR 1078482 | Zbl 0738.47051
[10] Kayser G.: Zur relativen Drehung in Hausdorffschen topologischen Vektorräumen. Wiss. Z. Techn. Univ. Dresden 23 (1974), 335-340. MR 0348564 | Zbl 0285.47043
[11] Krasnoselskii M.A., Zabreiko P.P.: Geometrical Methods in the Nonlinear Analysis (in Russian). Moscow, 1975.
[12] Krauthausen C.: Der Fixpunktsatz von Schauder in nicht notwendig lokalkonvexen Räumen sowie Anwendungen auf Hammersteinsche Gleichungen. Dissertation, TH Aachen, 1976.
Partner of
EuDML logo