Article
Keywords:
fixed point; Hammerstein integral equation; Volterra integral equation; measure of weak noncompactness; weak continuity
Summary:
In this paper we investigate weakly continuous solutions of some integral equations in Banach spaces. Moreover, we prove a fixed point theorem which is very useful in our considerations.
References:
[1] Ambrosetti A.:
Un teorema di esistenza per le equazioni differenziali negli spazi di Banach. Rend. Sem. Mat. Univ. Padova 39 (1967), 349-360.
MR 0222426
[2] Cramer E., Lakshmikantham V., Mitchell A.R.:
On the existence of weak solutions of differential equations in nonreflexive Banach spaces. Nonlinear Analysis 2 (1978), 169-177.
MR 0512280 |
Zbl 0379.34041
[3] Daneš J.:
Some fixed point theorems. Comment. Math. Univ. Carolinae 9 (1968), 223-235.
MR 0235435
[4] De Blasi F.S.:
On a property of the unit sphere in a Banach space. Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.
MR 0482402 |
Zbl 0365.46015
[5] Deimling K.:
Ordinary differential equations in Banach spaces. Lecture Notes Math., Berlin-Heidelberg-New York, 1977.
MR 0463601 |
Zbl 0418.34060
[7] Szufla S.:
On the equation $x'=f(t,x)$ in locally convex spaces. Math. Nachr. 118 (1984), 179-185.
MR 0773619 |
Zbl 0569.34052
[8] Szufla S.:
On the application of measure of noncompactness to existence theorems. Rend. Sem. Mat. Univ. Padova 75 (1986), 1-14.
MR 0847653 |
Zbl 0589.45007