[3] Baran M., Mielke M.V.: Generalized Separation Properties in Topological Categories. in preparation.
[4] Brümmer G.C.L.: A Categorical Study of Initiality in Uniform Topology. Thesis, University of Cape Town, 1971.
[5] Harvey J.M.:
$T_0$-separation in topological categories. Quastiones Math. 2 (1977), 177-190.
MR 0486050 |
Zbl 0384.18002
[7] Hoffmann R.-E.: $(E,M)$-Universally Topological Functors. Habilitationsschrift, Universität Düsseldorf, 1974.
[8] Hosseini N.: The Geometric Realization Functors and Preservation of Finite Limits. Dissertation, University of Miami, 1986.
[9] Hušek M., Pumplün D.:
Disconnectedness. Quaestiones Math. 13 (1990), 449-459.
MR 1084754
[10] Marny Th.: Rechts-Bikategoriestrukturen in topologischen Kategorien. Dissertation, Freie Universität Berlin, 1973.
[11] Mielke M.V.:
Convenient categories for internal singular algebraic topology. Illinois Journal of Math., vol. 27, no. 3, 1983.
MR 0698313 |
Zbl 0496.55006
[12] Mielke M.V.:
Geometric topological completions with universal final lifts. Top. and Appl. 9 (1985), 277-293.
MR 0794490 |
Zbl 0581.18004
[14] Nel L.D.:
Initially structured categories and cartesian closedness. Can. Journal of Math. XXVII (1975), 1361-1377.
MR 0393183 |
Zbl 0294.18002
[15] Schwarz F.:
Connections Between Convergence and Nearness. Lecture Notes in Math. 719, Springer-Verlag, 1978, pp. 345-354.
MR 0544658 |
Zbl 0409.54002
[16] Weck-Schwarz S.:
$T_0$-objects and separated objects in topological categories. Quastiones Math. 14 (1991), 315-325.
MR 1123910