Previous |  Up |  Next

Article

Keywords:
subdifferential; compact type; Vietoris topology; Hausdorff metric; parabolic optimal control problem
Summary:
In this paper we study evolution inclusions generated by time dependent convex subdifferentials, with the orientor field $F$ depending on a parameter. Under reasonable hypotheses on the data, we show that the solution set $S(\lambda )$ is both Vietoris and Hausdorff metric continuous in $\lambda \in \Lambda $. Using these results, we study the variational stability of a class of nonlinear parabolic optimal control problems.
References:
[1] Aubin J.-P., Cellina A.: Differential Inclusions. Springer, Berlin, 1983. MR 0755330 | Zbl 0538.34007
[2] Barbu V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publishing, Leiden, The Netherlands, 1976. MR 0390843 | Zbl 0328.47035
[3] Brezis H.: Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973. Zbl 0252.47055
[4] DeBlasi F., Myjak J.: On continuous approximations for multifunctions. Pacific J. Math. 123 (1986), 9-31. MR 0834135
[5] Hiai F., Umgaki H.: Integrals, conditional expectations and martingales of multivalued functions. J. Multiv. Anal. 7 (1977), 149-182. MR 0507504
[6] Klein E., Thompson A.: Theory of Correspondences. Wiley, New York, 1984. MR 0752692 | Zbl 0556.28012
[7] Lim T.-C.: On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. J. Math. Anal. Appl. 110 (1985), 436-441. MR 0805266 | Zbl 0593.47056
[8] Nadler S.B.: Multivalued contraction mappings. Pacific J. Math. 30 (1969), 475-488. MR 0254828
[9] Papageorgiou N.S.: A stability result for differential m inclusions in Banach spaces. J. Math. Anal. Appl. 118 (1986), 232-246. MR 0849457
[10] Papageorgiou N.S.: Convergence theorems for Banach space valued integrable multifunctions. International J. Math. and Math. Sci. 10 (1987), 433-442. MR 0896595 | Zbl 0619.28009
[11] Papageorgiou N.S.: On measurable multifunctions with applications to random multivalued equations. Math. Japonica 34 (1989), 287-296.
[12] Papageorgiou N.S.: Infinite dimensional control systems with state and control constraints. Proceedings of the Indian Academy of Sciences 100 (1990), 65-77. MR 1051092 | Zbl 0703.49018
[13] Papageorgiou N.S.: On evolution inclusions associated with time dependent convex subdifferentials. Comment. Math. Univ. Carolinae 31 (1990), 517-527. MR 1078486 | Zbl 0711.34076
[14] Przyluski K.M.: Remarks on continuous dependence of an optimal control on parameters. in: Game Theory and Mathematical Economics, eds. O. Moeschlin and D. Pallashke, North Holland, Amsterdam, 1981, pp. 331-327. Zbl 0475.49025
[15] Rybinski L.: A fixed point approach in the study of the solution sets of Lipschitzian functional-differential inclusions. J. Math. Anal. Appl. 160 (1991), 24-46. MR 1124074 | Zbl 0735.34016
[16] Stassinopoulos G., Vinter R.: Continuous dependence of a differential inclusion on the right-hand side with applications to stability of optimal control problems. SIAM J. Control and Optim. 17 (1979), 432-449. MR 0528904
[17] Tolstonogov A.: On the dependence on parameter of a solution of a differential inclusion with nonconvex second member. Diff. Equations 18 (1982), 1105-1113. MR 0672160
[18] Tsukada M.: Convergence of best approximations in smooth Banach spaces. J. Approx. Theory 40 (1984), 301-309. MR 0740641
[19] Vasilev A.: Continuous dependence of the solutions of differential inclusions on the parameter. Ukrainian Math. J. 35 (1983), 520-524. MR 0723122
[20] Wagner D.: Survey of measurable selection theorems. SIAM J. Control Optim. 15 (1977), 859-903. MR 0486391 | Zbl 0407.28006
[21] Watanabe J.: On certain nonlinear evolution equations. J. Math. Soc. Japan 25 (1973), 446-463. MR 0326522 | Zbl 0253.35053
[22] Yamada Y.: On evolution inclusions generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo 23 (1976), 491-515. MR 0425701
[23] Yotsutani S.: Evolution equations associated with the subdifferentials. J. Math. Soc. Japan 31 (1978), 623-646. MR 0544681 | Zbl 0405.35043
Partner of
EuDML logo