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Evolution inclusions of the subdifferential

type depending on a parameter

Dimitrios Kandilakis, Nikolaos S. Papageorgiou

Abstract. In this paper we study evolution inclusions generated by time dependent convex
subdifferentials, with the orientor field F depending on a parameter. Under reasonable
hypotheses on the data, we show that the solution set S(λ) is both Vietoris and Hausdorff
metric continuous in λ ∈ Λ. Using these results, we study the variational stability of a class
of nonlinear parabolic optimal control problems.

Keywords: subdifferential, compact type, Vietoris topology, Hausdorff metric, parabolic
optimal control problem

Classification: 34G20, 49A20

1. Introduction.

In this paper we consider the following family of evolution inclusions, defined
on a separable Hilbert space H and parametrized by a parameter λ ∈ Λ, Λ being
a complete metric space:

(1)

{

−ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t), λ) a.e.

x(0) = x0(λ).

}

Here ϕ(t, ·) is a proper convex function, ∂ϕ(t, x) denotes its convex subdifferential
and F (t, x, λ) is a parametrized set-valued perturbation. Let S(λ) ⊆ C(T,H) be the
set of strong solutions of (1) (see Section 2). In this paper we study the continuity

properties of the multifunction λ → S(λ). Previously, such continuous dependence
results were obtained by Vasilev [19] and Lim [7] for differential inclusions in R

n

and by Tolstonogov [17] and Papageorgiou [9], who considered differential inclu-
sions in Banach space, but without subdifferential operators present. In fact, their
formulation of the problem precludes the applicability of their work to multivalued
partial differential equations and distributed parameter control systems.
In Section 4, we use our continuous dependence results to study the variational

stability of a class of nonlinear, parabolic optimal control problems. Such sensitivity
analysis is important from both the theoretical and applied viewpoints, because it
produces useful continuous dependence results, it suggests ways to solve parametric
problems, it gives us important information on what tolerances are permitted in
the specification of the mathematical model and it produces efficient algorithms for
the computational analysis of the problem. Our results in Section 4 extend the
works of Stassinopoulos-Vinter [16], who studied finite dimensional systems and of
Przyluski [14], who examined linear, quadratic optimal control problems, with the
parameter appearing only in the control constraint set.
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2. Preliminaries.

Let T = [0, r] equipped with the Lebesgue measure and the σ-field of the
Lebesgue measurable sets and X a separable Banach space. Throughout this note
we will be using the following notations:

Pf(c)(X) = {A ⊆ X : nonempty, closed (and convex)}
P(w)k(c)(X) = {A ⊆ X : nonempty, (weakly-) compact, (convex)}.and

A multifunction F : T → Pf (X) is said to be measurable, if t → d(x, F (t)) =

inf{‖x− z‖ : z ∈ F (t)} is measurable for every x ∈ X . By S
p
F , 1 ≤ p ≤ ∞, we will

denote the set of measurable selectors of F (·) that belong in the Lebesgue-Bochner
space Lp(X); i.e. Sp

F = {f ∈ Lp(X) : f(t) ∈ F (t) a.e.}. This set may be empty.
For a measurable multifunction, it is nonempty if and only if ω → inf{‖x‖ : x ∈
F (t)} ∈ Lp

+.

Let Λ be a complete metric space and G : Λ → 2X \ {∅} a multifunction. We
say that G(·) is upper semicontinuous (u.s.c.) (resp. lower semicontinuous (l.s.c.))
if and only if for all C ⊆ X closed, the set G−(C) = {λ ∈ Λ : G(λ) ∩ C 6= ∅} (resp.
G+(C) = {λ ∈ Λ : G(λ) ⊆ C}) is closed. A multifunction G(·) which is both upper
and lower semicontinuous, is said to be Vietoris continuous, to emphasize the fact
that G(·) is continuous when we endow the hyperspace 2X \ {∅} with the Vietoris
topology. For further details we refer to Klein-Thompson [6].
On Pf (X) we can define a generalized metric, known in the literature as the

Hausdorff metric, by setting for A,B ∈ Pf (X)

h(A,B) = max

[

sup
a∈A

d(a,B), sup
b∈B

d(b, A)

]

.

Recall that (Pf (X), h) is a complete metric space. A multifunction G : Λ →
Pf (X) is said to be Hausdorff continuous (h-continuous) if it is continuous from Λ
into (Pf (X), h). Also it is said to be Hausdorff Lipschitz (h-Lipschitz) with constant

k, if h(G(λ), G(λ′)) ≤ kdΛ(λ, λ
′) for all λ, λ′ ∈ Λ (here dλ(·, ·) denotes the metric

on Λ). In general, Vietoris and Hausdorff continuity are disjoint notions. However,
since on Pk(X) the Vietoris and Hausdorff topologies coincide (see Klein-Thompson
[6, Corollary 4.2.3, p. 41]), we deduce that a multifunction G : Λ → Pk(X) is
Vietoris continuous if and only if it is h-continuous.
Let {An, A}n≥1 ⊆ 2X \ {∅}. We define the following limit sets:

s-limAn = {x ∈ X : lim d(x,An) = 0} = {x ∈ X : x = s- limxn, xn ∈ An, n ≥ 1}
s-limAn = {x ∈ X : limd(x,An) = 0} = {x ∈ X : x =

= s- limxnk
, xnk

∈ Ank
, n1 < n2 < · · · < nk < . . . }

and

w-limAn = {x ∈ X : x = w- limxnk
, xnk

∈ Ank
, n1 < n2 < n3 < · · · < nk < . . . },
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where s- denotes the strong topology on X and w- the weak topology on X . It is
clear from the above definitions that we always have

s-limAn ⊆ s-limAn ⊆ w-limAn.

We say that An’s converge to A in the Kuratowski sense, denoted by An
K−→ A, if

s-limAn = s-limAn = A. We say that An’s converge to A in the Kuratowski-Mosco

sense, denoted by An
K−M−−−−→ A, if s-limAn = w-limAn = A. If G : Λ → Pk(X) is

a multifunction s.t. G(Λ) ∈ Pk(X), then G(·) is Vietoris continuous if and only if
for λn → λ, we have that G(λn)

K−→ G(λ) (see DeBlasi-Myjak [4, the remarks 1.6
and 1.7]).

Now let H be a separable Hilbert space and ϕ : H → R = R∪{+∞}. We say that
ϕ(·) is proper, if it is not identically +∞. Assume that ϕ(·) is proper, convex and
l.s.c. (usually this family of R-valued functions is denoted by Γ0(H)). By domϕ,
we will denote the effective domain of ϕ(·); i.e. domϕ = {x ∈ H : ϕ(x) <∞}. The
subdifferential of ϕ(·) at x ∈ H is the set ∂ϕ(x) = {x∗ ∈ H : (x∗, y−x) ≤ ϕ(y)−ϕ(x)
for all y ∈ domϕ} (here (·, ·) denotes the inner product in H). If ϕ(·) is Gateaux
differentiable, then ∂ϕ(x) = {ϕ′(x)}. We will say that ϕ(·) is of compact type, if
for every θ ∈ R, the level set {x ∈ H : ‖x‖2 + ϕ(x) ≤ θ} is compact.
By a strong solution of (1), we understand a function x(·) ∈ C(T,H) s.t. x(·) is

strongly absolutely continuous on (0, b), x(t) ∈ domϕ(t, ·) a.e. and satisfies −ẋ(t) ∈
∂ϕ(t, x(t)) + f(t) a.e. with f ∈ L2(h), f(t) ∈ F (t, x(t)) a.e. Recall that a strongly
absolutely continuous function from T into H is almost everywhere differentiable.

The following hypothesis concerning ϕ(t, x) will be valid throughout this paper,
and is originally due to Yotsutani [23].

H(ϕ) : ϕ : T ×H → R = R ∪ {+∞} is a function s.t.
(1) for every t ∈ T , ϕ(t, ·) is proper, convex, l.s.c. (i.e. ϕ(t, ·) ∈ Γ0(H)) and of
compact type,

(2) for any positive integer r′, there exists a constant Kr′ > 0, an absolutely
continuous function gr′ : T → R with ġr′ ∈ Lṗ(T ) and a function of bounded
variation hr′ : T → R s.t., if t ∈ T , x ∈ domϕ(t, ·) with ‖x‖ ≤ r′ and
s ∈ [t, b], then there exists x̂ ∈ domϕ(s, ·) satisfying

‖x̂− x‖ ≤ |gr′(s)− gr′(t)|(ϕ(t, x) +Kr′)
α

and ϕ(s, x̂) ≤ ϕ(t, x) + |hr′(s)− hr′(t)|(ϕ(t, x) +Kr′) where α ∈ [0, 1], and
β = 2 if α ∈ [0, 1/2] or β = 1/1− α if α ∈ [1/2, 1].

The following existence theorem is due to Yotsutani [23] and extends earlier
important works due to Watanabe [21] and Yamada [22]. In particular, Yamada [22]
was the first to consider an interesting application on nonlinear, partial differential
equations.
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Theorem 2.1. If hypothesis H(ϕ) above holds, then the Cauchy problem −ẋ(t) ∈
∂ϕ(t, x(t)) + f(t) a.e., x(0) = x0 ∈ domϕ(0, ·) has a unique solution x(·) = p(f)(·),
for every f ∈ L2(H).

Let p : L2(H)→ C(T,H) be the solution map; i.e. p(f)(·) is the unique solution
of −ẋ(t) ∈ ∂ϕ(t, x(t))+f(t) a.e., x(0) = x0. We know from the proof of Theorem 4.1
of [13] that p(·) is sequentially continuous from L2(H) equipped with the weak
topology, into C(T,H) equipped with the strong topology.
The next theorem was first proved by the second author in [9] and was recently

improved by Rybinski [15], who relaxed the hypothesis on the Banach space X and
also removed the uniform boundedness by a weakly compact set hypothesis (see
Theorem 3.1 of [9] and Theorem 1 of [15]). Here we will use the improved version
due to Rybinski [15].

Theorem 2.2. If X is a Banach space, W ∈ Pfc(X), Fn, F : W → Pwkc(X) are

h-Lipschitz multifunctions with the same constant k ∈ (0, 1) (i.e. h(Fn(x), Fn(x
′)),

h(F (x), F (x′)) ≤ k‖x− x′‖) and for xn
s−→ x, we have Fn(xn)

K−M−−−−→ F (x), then if

Ln = {x ∈ X : x ∈ Fn(x)} and L = {x ∈ X : x ∈ F (x)}, we have Ln
K−→ L.

Note that the sets Ln, L, n ≥ 1 are nonempty by Nadler’s fixed point theorem [8].
The following lemma can be found in [12, Lemma δ].

Lemma 2.1. If Λ is a metric space, X is a Banach space, F : Λ → Pk(X) is
a multifunction s.t. for every K ⊆ Λ compact, F |K is u.s.c., then F (·) is u.s.c.
3. Continuous dependence results.

Let S(λ) ⊆ C(T,H) be the solution set of (1). We know from Theorem 3.1

of [13], that S(λ) ∈ Pk(C(T,H)). In this section, we study the continuity properties
of multifunction S : Λ → Pk(C(T,H)). We will need the following hypothesis on
the orientor field F (t, x, λ):

H(F ) : F : T ×H × Λ→ Pfc(H) is a multifunction s.t.

(1) t→ F (t, x, λ) is measurable,
(2) h(F (t, x, λ), F (t, x′, λ)) ≤ kB(t)‖x − x′‖ a.e. with kB(·) ∈ L1+ for all λ ∈

B ⊆ Λ, B compact,
(3) λ → F (t, x, λ) is d-continuous (i.e. λ → d(y, F (t, x, λ)) is continuous for
every y ∈ H),

(4) |F (t, x, λ)| = sup{‖y‖ : y ∈ F (t, x, λ)} ≤ αB(t) + βB(t)‖x‖ a.e. with
αB , βB ∈ L2+, λ ∈ B ⊆ Λ, B compact.

Also we will make the following hypothesis for the initial conditions.

H0 : x0 : Λ→ H is continuous and for all λ ∈ Λ, x0(λ) ∈ domϕ(0, ·).
Theorem 3.1. If the hypotheses H(ϕ), H(F ) and H0 hold, then S : Λ →
Pk(C(T,H)) is Vietoris continuous.

Proof: Let B ⊆ Λ nonempty and compact. We will obtain an a priori bound for
the elements in

⋃

λ∈B S(λ). To this end, let x(·) ∈ ⋃

λ∈B S(λ). So x(·) ∈ S(λ),
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λ ∈ B. Also let u(·) ∈ C(T,H) be the unique strong solution of the unperturbed
Cauchy problem−u̇(t) ∈ ∂ϕ(t, u(t)) a.e., u(0) = x0(λ). Exploiting the monotonicity
of the subdifferential operator, we have

(−ẋ(t) + u̇(t), u(t)− x(t)) ≤ (f(t), u(t)− x(t)) a.e.

for some f ∈ L2(H), f(t) ∈ F (t, x(t), λ) a.e. Then we have:

1

2

d

dt
‖x(t)− u(t)‖2 ≤ ‖f(t)‖ · ‖x(t)− u(t)‖ a.e.

⇒ 1

2
‖x(t)− u(t)‖2 ≤

∫ t

0
‖f(s)‖ · ‖x(s)− u(s)‖ ds.

Applying Lemma A.5, p. 157 of Brezis [3], we get

‖x(t)− u(t)‖ ≤
∫ t

0
‖f(s)‖ ds ≤

∫ t

0
(αB(s) + βB(s)‖x(s)‖) ds

⇒ ‖x(t)‖ ≤ ‖u‖C(T,H) +

∫ t

0
(αB(s) + βB(s)‖x(s)‖) ds, t ∈ T.

Invoking Gronwall’s lemma, we deduce that there exists MB > 0 s.t. for all
x ∈ ⋃

λ∈B S(λ), we have
‖x‖C(T,H) ≤MB.

So without any loss of generality, we may assume that for all λ ∈ B

|F (t, x, λ)| = sup{‖y‖ : y ∈ F (t, x, λ)} ≤ ψB(t) = αB(t) + βB(t)MB a.e.,

with ψB(·) ∈ L2+ (see hypothesis H(F ) (4)).

On L1(H) consider the equivalent norm ‖g‖B =
∫ r
0 exp[−L

∫ t
0 kB(s) ds]‖g(s)‖ ds.

We will show that the multifunctions g → R(g, λ) = S1F (·,p(g)(·),λ) are hB-Lipschitz

on WB = {g ∈ L1(H) : ‖g(t)‖ ≤ ψB(t) a.e} with the same Lipschitz constant
k̂L ∈ (0, 1) for L > 1. So let g1, g2 ∈ WB and let v1 ∈ R(g1, λ). Then let
Γ(t) = {z ∈ F (t, p(g2)(t), λ) : dB(v1(t), F (t, p(g2)(t), λ)) = ‖v1(t) − z‖}. We have
Γ(t) 6= ∅ for all t ∈ T and GrΓ ∈ Σ×B(H), B(H) being the Borel σ-field of H (see
the hypotheses H(F ) (1) and (2) and use Theorem 3.3 of [11]). Apply Aumann’s
selection theorem (see Wagner [20, Theorem 5.10]), to get w : T → H measurable
s.t. w(t) ∈ Γ(t), t ∈ T . Then we have d(v1(t), F (t, p(g2)(t), λ)) = ‖v1(t) − w(t)‖,
t ∈ T and so

dB(v1, R(g2, λ)) ≤ ‖v1 − w‖B

=

∫ r

0
exp

[

−L
∫ t

0
kB(s) ds

]

‖v1(t)− w(t)‖ dt

≤
∫ r

0
exp

[

−L
∫ t

0
kB(s) ds

]

h(F (t, p(g1)(t), λ), F (t, p(g2)(t), λ)) dt

≤
∫ r

0
exp

[

−L
∫ t

0
kB(s) ds

]

kB(t)‖p(g1)(t)− p(g2)(t)‖ dt

= − 1
L

∫ r

0
‖p(g1)(t)− p(g2)(t)‖ d

[

exp(−L
∫ t

0
kB(s) ds)

]

.
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Exploiting the monotonicity of the subdifferential, we can check that

‖p(g1)(t)− p(g2)(t)‖ ≤
∫ t

0
‖g1(s)− g2(s)‖ ds, t ∈ T.

So we have:

dB(v1, R(f2, λ)) ≤ − 1
L

∫ r

0
(

∫ t

0
‖g1(s)− g2(s)‖ ds) d

[

exp(−L
∫ t

0
kB(s) ds

]

=
1

L

∫ r

0
exp

[

−L
∫ t

0
kB(s) ds

]

‖g1(t)− g2(t)‖ dt ≤
1

L
‖g1 − g2‖B .

Similarly if v2 ∈ R(g2, λ) , we get that

dB(v2, R(g1, λ)) ≤
1

L
‖g1 − g2‖B .

Therefore , we conclude that

h(R(g1, λ), R(g2), λ)) ≤
1

L
‖g1 − g2‖B , L > 1.

Next we will show that if [fn, λn] → [f, λ] in (WB , ‖ · ‖B) × B, then R(fn, λn)
K−M−−−−→ R(f, λ). So let g ∈ R(f, λ) and set γn(t) = d(g(t), F (t, p(fn)(t), λn)). We
have:

γn(t) = d(g(t), F (t, p(fn)(t), λn))

≤ d(g(t), F (t, p(f)(t), λn)) + h(F (t, p(fn)(t), F (t, p(f)(t), λn))

≤ d(g(t), F (t, p(f)(t), λn)) + kB(t)‖p(fn)(t)− p(f)(t)‖ a.e.

Because of the hypothesis H(F ) (3), we have

d(g(t), F (t, p(f)(t), λn))→ 0 as n→ ∞,

while from the continuity of the solution map p(·), we have

‖p(fn)(t) − p(f)(t)‖ → 0 as n→ ∞.

Thus we get γn(t)→ 0 a.e. as n→ ∞.
Let Hn(t) = {v ∈ F (t, p(fn)(t), λn) : ‖v − g(t)‖ ≤ γn(t) +

1
n} 6= ∅. As above,

using the hypotheses H(F ) (1) and (2) and Theorem 3.3 of [11], we can get that

GrHn ∈ B(T )×B(H).

Apply Aumann’s selection theorem to get gn : T → H , n ≥ 1 measurable
functions s.t. gn(t) ∈ F (t, p(fn)(t), λn) a.e. ‖gn(t) − g(t)‖ ≤ γn(t) +

1
n → 0 a.e. as
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n→ ∞ ⇒ gn → g in (WB , ‖ ·‖B). Since gn ∈ R(fn, λn), n ≥ 1, we have established
that

(2) R(f, λ) ⊆ s-limR(fn, λn).

Next let g ∈ w-limR(fn, λn). Denoting subsequences with the same index as the

original sequences, we know that we can find gn ∈ R(fn, λn) s.t. gn
w−→ g in L1(H)

and clearly because ‖gn(t)‖ ≤ ψB(t) a.e. with ψB(·) ∈ L2+, we also have gn
w−→ g in

L2(H). Apply Theorem 3.1 of [10] to get

g(t) ∈ convw-lim{fn(t)}n≥1 ⊆ convw-limF (t, p(fn)(t), λn) a.e.

Observe that for any v ∈ H , we have

d(v, F (t, p(f)(t), λn))

≤ d(v, F (t, p(fn)(t), λn)) + h(F (t, p(f)(t), λn), F (t, p(fn)(t), λn))

≤ d(v, F (t, p(fn)(t), λn)) + kB(t)‖p(fn)(t)− p(f)(t)‖.

Passing to the limit as n → ∞ and using the hypothesis H(F ) (3), we get
d(v, F (t, p(f)(t), λ)) ≤ limd(v, F (t, p(fn)(t), λn)).
From Theorem 2.2. (iv) of Tsukada [18], we deduce that

w-limF (t, p(fn)(t), λn) ⊆ F (t, p(f)(t), λ) a.e.

⇒ g(t) ∈ F (t, p(f)(t), λ) a.e.; i.e. g ∈ R(f, λ).

So we have proved that

(3) w-limR(fn, λ) ⊆ R(f, λ).

From (2) and (3) above, we deduce that

R(fn, λn)
K−M−−−−→ R(f, λ).

Let L(λ) = {f ∈ WB : f ∈ R(f, λn)} and L(λ) = {f ∈ WB : f ∈ R(f, λ)}. Then
from Theorem 2.2, we have that L(λn)

K−→ L(λ) in (WB , ‖ · ‖B) ⇒ p(L(λn))
K−→

p(L(λ)) as n → ∞ in C(T,H). But S(λn) = p(L(λn)) and S(λ) = p(L(λ)). Hence

S(λn)
K−→ S(λ) in C(T,H). Since

⋃

l∈B S(λ) ⊆ p(WB) ∈ Pk(C(T,H)), we deduce
(see Section 2) that S |B is Vietoris continuous. Note that by the remark 1.7 of
DeBlasi-Myjak [4], S(·) is l.s.c. and from Lemma 2.1, S(·) is u.s.c. Therefore S(·)
is Vietoris continuous. �

Recalling (see Section 2) that on Pk(C(T,H)), the Vietoris and Hausdorff metric
topologies coincide, we get:
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Theorem 3.2. If the hypotheses H(ϕ), H(F ) and H0 hold, then S : Pk(C(T,H))
is h-continuous.

4. Sensitivity of optimal control problems.

Let Z be a bounded domain in R
N with boundary Γ = ∂Z and T = [0, r]. Also

let Λ be a complete metric space (the parameter space). We consider the following
parametrized family of optimal control problems:

(4)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∫

Z
η(z, x(b, z), λ) dz → inf = m(λ)

s.t.
∂x

∂t
−

N
∑

i,j=1

∂

∂zj

(

aij(t, z)
∂x

∂zi

)

+ β(x(t, z)) ∋ f(t, z, x(t, z), λ)u(t, z)

x(0, z) = x0(z, λ), x |T×Γ= 0, |u(t, z)| ≤ θ(t, z, λ) a.e.,

u(·, ·) is measurable.

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

We will need the following hypotheses on the data of (4) above:

H(a) : aij ∈ L∞(T × Z), aij = aji,
∑N

i,j=1 aij(t, z)ηiηj ≥ c‖η‖2 for every
(t, z) ∈ T×Z and every η ∈ R

N with c > 0 and that |aij(t, z)−aij(t
′, z)| ≤

k|t− t′| a.e. on Z, with k > 0.
H(β) : β = ∂j with j ∈ Γ0(R,R+).
H(f) : f : T × Z × R × Λ→ R is a function s.t.

(1) (t, z)→ f(t, z, x, λ) is measurable,
(2) |f(t, z, x, λ) − f(t, z, y, λ)| ≤ kB(t, z)|x − y| a.e. with kB(·, ·) ∈ L1(T × Z),

λ ∈ B ⊆ Λ, B compact,
(3) λ→ f(t, z, x, λ) is continuous,
(4) |f(t, z, x, λ)| ≤ aB(t, z)+cB(t, z)|x| a.e. with aB ∈ L2(T×Z), cB ∈ L∞(T×

Z), λ ∈ B ⊆ Λ, B compact.
H(θ) : θ(·, ·, λ) ∈ L∞(T × Z) and λ→ θ(t, z, λ) is continuous.

H(η) : η : Z × R × Λ→ R is an integrand s.t.

(1) z → η(z, x, λ) is measurable,
(2) (x, λ)→ η(z, x, λ) is continuous,
(3) |η(z, x, λ)| ≤ ψ1B(z) + ψ2B(z)|x|2 a.e. with ψ1B(·) ∈ L2+, ψ2B(·) ∈ L∞

+ ,
λ ∈ B ⊆ Λ, B compact.

H0 : x0(·, λ) ∈ H10 (Z), j(x0(·, λ)) ∈ L1(Z) and λ→ x0(·, λ) is continuous from Λ
into L2(Z).

Let Q(λ) ⊆ C(T,H) be the set of optimal trajectories of (4).

Theorem 4.1. If the hypotheses H(a), H(β), H(f), H(θ), H(η) and H0 hold,
then for every λ ∈ Λ, Q(λ) 6= ∅, Q : Λ → Pk(C(T,H)) is u.s.c. and m : Λ → R is

continuous.
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Proof: In this case H = L2(Z). Define ϕ : T ×H → R = R ∪ {+∞} by

ϕ(t, z) =











1
2

∑N
i,j=1

∫

Z aij(t, z)
∂x
∂zi

∂x
∂zj

dz +
∫

Z j(x(z)) dz if x ∈ H10 (Z),

j(x(·)) ∈ L1(Z)

+∞ otherwise.

As in [13] (see also Barbu [2]), we can check that ϕ(t, x) satisfies hypothesis H(ϕ)
and furthermore

∂ϕ(t, x) =







−
N

∑

i,j=1

∂

∂zj
(aij(t, ·)

∂x

∂zj
) + g(·) : g ∈ L2(Z), g(z) ∈ β(x(z)) a.e.







.

Let f̂ : T ×H × Λ→ H be defined by

f̂(t, x, λ)(·) = f(t, ·, x(·), λ),

i.e. f̂ is the Nemitsky (superposition) operator corresponding to f .
Also let U(t, λ) = {u ∈ L2(Z) : |u(z)| ≤ θ(t, z, λ) a.e.}. Set

F (t, x, λ) = f̂(t, x, λ)U(t, λ) = {f̂(t, x, λ)u : u ∈ U(t, λ)} ∈ Pwkc(H).

Given v ∈ H = L2(Z), we have

d(v, F (t, x, λ)) = inf{‖v − f̂(t, x, λ)u‖2 : u ∈ U(t, λ)}

= inf

[

(

∫

Z
|v(z)− f(t, z, x(z), λ)u(z)|2 dz)1/2 : u ∈ U(t, λ)

]

=

[

inf(

∫

Z
|v(z)− f(t, z, x(z), λ)u(z)|2 dz : u ∈ U(t, λ))

]1/2

=

[
∫

Z
inf(|v(z)− f(t, z, x(z), λ)u|2 : |u| ≤ θ(t, z, λ)) dz

]1/2

(see Hiai-Umgaki [5, Theorem 2.2)]

=
(

∫

Z
|v(z)− f(t, z, x(z), λ)û0(t, z)|2 dz

)1/2

(via Aumann’s selection theorem, û0(·, ·) measurable,
û0(t, ·) ∈ U(t, λ), t ∈ T )

= ‖v − f̂(t, x, λ)û0(t, ·)‖2 .

But note that (f̂(t, x, λ)û0(t, ·), h)L2(Z) =
∫

Z f(t, z, x(z), λ)û0(t, z)h(z) dz is mea-

surable in t (Fubini’s theorem), so that t → f̂(t, x, λ)û0(t, ·) is weakly measurable
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and since H = L2(Z) is separable, we conclude from the Pettis measurability the-

orem that t → f̂(t, x, λ)û0(t, ·) is measurable ⇒ t → d(v, F (t, x, λ)) is measurable
⇒ t→ F (t, x, λ) is measurable.
Also note that

h(F (t, x, λ), F (t, y, λ)) ≤ ‖f̂(t, x, λ)− f̂(t, y, λ)‖ ‖θ‖∞
≤ ‖k‖1 ‖θ‖∞

√
r‖x− y‖2 (see the hypothesis H(f) (2)).

Next we will show that for every v ∈ H = L2(Z), λ → d(v, F (t, x, λ)) is contin-
uous. To this end, let λn → λ and let u ∈ U(t, λ). Clearly U(t, ·) is h-continuous
(see the hypothesis H(θ)) and so we can find un ∈ U(t, λn), un

s−→ u in L2(Z). We
have:

d(v, F (t, x, λn)) ≤ ‖v − f̂(t, x, λn)un‖2
⇒ limd(v, F (t, x, λn)) ≤ ‖v − f̂(t, x, λ)u‖2 .

Since u ∈ U(t, λ) was arbitrary, we get that

(5) limd(v, F (t, x, λn)) ≤ d(v, F (t, x, λ)).

On the other hand, let un ∈ U(t, λn), n ≥ 1 s.t.

d(v, F (t, x, λn)) = ‖v − f̂(t, x, λn)un‖2 .

We may assume that un
w∗

−−→ u in L∞(Z) (see the hypothesis H(θ)). Then for
every w ∈ L2(Z), we have

(f̂(t, x, λn)un, w)L2(Z) =

∫

Z
f(t, z, x(z), λn)un(z)w(z) dz

→
∫

Z
f(t, z, x(z), λ)u(z)w(z) dz = (f̂(t, x, λ)u,w)L2(Z)

⇒ f̂(t, xn, λn)un
w−→ f̂(t, x, λ)u in L2(H) and clearly u ∈ U(t, λ). Using the fact

that the norm is weakly l.s.c., we get

(6)
‖v − f̂(t, x, λ)u‖2 ≤ lim‖v − f̂(t, x, λn)un‖2
⇒ d(v, F (t, x, λ)) ≤ limd(v, F (t, x, λn)).

From (5) and (6) above, we deduce that λ→ d(v, F (t, x, λ)) is continuous.
Finally note that

|F (t, x, λ)| ≤ ‖aB(t, ·)‖2‖θ‖∞ + ‖cB‖∞‖θ‖∞|Z|1/2‖x‖l2(Z)
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with |Z| denoting the volume (Lebesgue measure) of the domain Z.
So we have satisfied the hypothesis H(F ).
Next let η̂ : H × Λ→ R be defined by

η̂(x, λ) =

∫

Z
η(z, x(z), λ) dz.

Clearly η̂(·, ·) is continuous (see the hypothesis H(η)).
Now rewrite (∗∗) in the following equivalent abstract form:

(7)

∣

∣

∣

∣

∣

∣

∣

η̂(x(b), λ)→ inf = m(λ)
s.t. − ẋ(t) ∈ ∂ϕ(t, x(t)) + F (t, x(t), λ) a.e.

x(0) = x0(λ).

∣

∣

∣

∣

∣

∣

∣

Let S(λ) ⊆ C(T, L2(Z)) be the set of admissible trajectories of (7). We know

that for every λ ∈ Λ, S(λ) is compact in C(T, L2(Z)). So since η̂(·, ·) is continuous,
we deduce that for every λ ∈ Λ, Q(λ) 6= ∅.
Next we will establish the continuity of the value function m(·). So let λn → λ

in Λ and take x ∈ S(λ) s.t.

m(λ) = η̂(x, λ) (i.e. x ∈ Q(λ)).

From Theorem 3.1, we know that S(λn)
K−→ S(λ). So we can find xn ∈ S(λn),

n ≥ 1 s.t. xn
s−→ x in C(T, L2(Z)). Then we have:

(8)
m(λn) ≤ η̂(xn, λn)

⇒ limm(λn) ≤ lim η̂(xn, λn) = η̂(x, λ) = m(λ).

Also let xn ∈ S(λn) s.t. m(λn) = η̂(xn, λn). Recalling that for all n ≥ 1, we have

S(λn) ⊆ p(WB) ∈ Pk(C(T, L
2(Z))) (see the proof of Theorem 3.1)

we deduce that by passing to a subsequence, we may assume that xn
s−→ x in

C(T, L2(Z)). Then

(9)
η̂(xn, λn)→ η̂(x, λ)

⇒ m(λ) ≤ limm(λn).

From (8) and (9) above, we get that m(·) is continuous.
Finally, using the continuity of m(·), we can easily check that

limQ(λn) ⊆ Q(λ),
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which implies that for any B ⊆ Λ compact, Q |B has a closed graph, thus is u.s.c.
(see DeBlasi-Myjak [4, the remark 1.6]). Then Lemma 2.1 gives us the desired
upper semicontinuity of Q(·) : Λ→ Pk(C(T, L

2(Z))). �

Let K : T → Pfc(R
n) be a multifunction s.t. h(K(t′),K(t)) ≤

∫ t′

t γ(s) ds. Let
δK(t)(x) = 0 if x ∈ K(t), and +∞ otherwise (the indicator function of the moving
set K(t)). Then from the convex analysis, we know that ∂δK(t)(x) = NK(t)(x) =

the normal cone to the set K(t) at x ∈ R
n. It is easy to see that hypothesis H(ϕ)

is satisfied by δK(t)(·) (take ġr′ = γ, β = 1, hr′ = 0). Then the problem (1) takes
the following special form:

(10)

{

−ẋ(t) ∈ NK(t)(x(t)) + F (t, x(t), λ) a.e.

x(0) = x0(λ) ∈ K(0).

}

Evolution inclusions of this form arise in mathematical economics and theoreti-
cal mechanics and are also called “differential variational inequalities” (see Aubin-
Cellina [1]). The work in this paper incorporates systems like (10) above.
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