Article
Keywords:
Orlicz spaces; inductive limit topologies; convex functions
Summary:
Let $L^\varphi $ be an Orlicz space defined by a convex Orlicz function $\varphi $ and let $E^\varphi $ be the space of finite elements in $L^\varphi $ (= the ideal of all elements of order continuous norm). We show that the usual norm topology $\Cal T_\varphi$ on $L^\varphi $ restricted to $E^\varphi $ can be obtained as an inductive limit topology with respect to some family of other Orlicz spaces. As an application we obtain a characterization of continuity of linear operators defined on $E^\varphi $.
References:
[1] Davis H.W., Murray F.J., Weber J.K.:
Families of $L_p$-spaces with inductive and projective topologies. Pacific J. Math. 34 (1970), 619-638.
MR 0267389
[2] Davis H.W., Murray F.J., Weber J.K.:
Inductive and projective limits of $L_p$-spaces. Portugal. Math. 38 (1972), 21-29.
MR 0303276 |
Zbl 0238.46033
[3] Krasnoselskii M.A., Rutickii Ya.B.: Convex Functions and Orlicz Spaces. Groningen, 1961.
[4] Leśniewicz R.:
On two equalities for Orlicz spaces. Bull. Acad. Pol. Sci. 27 (1979), 557-560.
MR 0581551
[5] Luxemburg W.A.:
Banach Functions Spaces. Delft, 1955.
MR 0072440
[6] Musielak J., Orlicz W.:
Some remarks on modular spaces. Bull. Acad. Pol. Sci. 7 (1959), 661-668.
MR 0112017 |
Zbl 0099.09202
[7] Nowak M.:
Some equalities among Orlicz spaces II. Bull. Acad. Pol. Sci. 34 (1986), 675-687.
MR 0890613 |
Zbl 0639.46033
[8] Nowak M.:
Unions and intersections of families of $L^p$-spaces. Math. Nachr. 136 (1988), 241-251.
MR 0952476
[11] Turpin Ph.:
Convexités dans les espaces vectoriels topologiques généraux. Dissertationes Math. 131 (1976).
MR 0423044 |
Zbl 0331.46001
[12] Welland R.:
Inclusions relations among Orlicz spaces. Proc. Amer. Math. Soc. 17 (1966), 135-138.
MR 0188773