Previous |  Up |  Next

Article

Title: Envelopes of holomorphy for solutions of the Laplace and Dirac equations (English)
Author: Kolář, Martin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 32
Issue: 3
Year: 1991
Pages: 479-494
.
Category: math
.
Summary: Analytic continuation and domains of holomorphy for solution to the complex Laplace and Dirac equations in $\bold C^n$ are studied. First, geometric description of envelopes of holomorphy over domains in $\bold E^n$ is given. In more general case, solutions can be continued by integral formulas using values on a real $n-1$ dimensional cycle in $\bold C^n$. Sufficient conditions for this being possible are formulated. (English)
Keyword: envelope of holomorphy
Keyword: integral formula
Keyword: index
Keyword: null-convexity
Keyword: complex null cone
Keyword: Lipschitz boundary
MSC: 15A66
MSC: 30G35
MSC: 32D10
MSC: 35B60
MSC: 35J05
MSC: 35Q40
idZBL: Zbl 0759.32008
idMR: MR1159796
.
Date available: 2009-01-08T17:46:25Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/118429
.
Reference: [1] Brackx F., Delanghe R., Sommen R.: Clifford Analysis.Research Notes in Mathematics No.76, Pitman 1982. Zbl 1058.30043
Reference: [2] Bureš M., Souček V.: Generalized hypercomplex analysis and its integral formulas.Complex Variables: Theory and Application 5 (1985), 53-70. MR 0822855
Reference: [3] Dodson M., Souček V.: Leray residues applied to the solution of the Laplace and Wave equations.Seminari di geometria, Bologna (1984), 93-107. MR 0866151
Reference: [4] Ryan J.: Cells of harmonicity and generalized Cauchy integral formula.Proc. London Math. Society (3) 60 (1990), 295-318. MR 1031455
Reference: [5] Siciak J.: Holomorphic continuation of harmonic functions.Ann. Polon. Math. 29 (1974), 67-73. Zbl 0247.32011, MR 0352530
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_32-1991-3_10.pdf 258.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo