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Envelopes of holomorphy for solutions

of the Laplace and Dirac equations

Martin Kolář

Abstract. Analytic continuation and domains of holomorphy for solution to the complex
Laplace and Dirac equations in Cn are studied. First, geometric description of envelopes of
holomorphy over domains in En is given. In more general case, solutions can be continued
by integral formulas using values on a real n − 1 dimensional cycle in Cn. Sufficient
conditions for this being possible are formulated.

Keywords: envelope of holomorphy, integral formula, index, null-convexity, complex null
cone, Lipschitz boundary

Classification: 32D10, 30G35

Introduction.

The aim of this paper is to give a geometric description of natural domains of
holomorphy for solutions of the complex Laplace and Dirac equations. From one
point of view, it is analogous to the study of domains of holomorphy for functions
of several complex variables. Instead of holomorphic functions, we consider holo-
morphic solutions to complex partial differential equations.

The study of partial differential equations on domains in Cn was inspired by
quantum field theory. One of the fundamental questions that arose in the physical
context was that of analytic continuation of solutions and of domains of holomorphy.
There is a substantial difference between even and odd dimensions. We will confine
ourselves to the case of even dimension, n = 2k.

In the part 2, we consider the basic case of the continuation of solutions from En

to Cn. Given a domain in En we describe a corresponding domain in Cn, the en-
velope of holomorphy, with the property that every solution on the original domain
extends to a holomorphic solution on the envelope of holomorphy. These domains
were previously described in [4], [5]. We give a new, constructive description of
envelopes of holomorphy.

J. Ryan further generalized Euclidean domains to a certain class of real n-dimen-
sional manifolds with boundary in Cn (see [4]). He used the generalized Cauchy
integral formula to give other examples of envelopes of holomorphy. In the part 3,
we apply more efficient integral formulas, introduced in the part 1, to show that we
need only an (n− 1)-dimensional real closed manifold (which may but need not be
given as the boundary of an n-dimensional surface) to be able to holomorphically
continue the solutions.
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1. Integral formulas for the Dirac and Laplace equations.

For z ∈ Cn, let z = (z1, ..., zn), zi = xi + iyi. Let E
n denote the Euclidean

subspace of Cn:
En = {z ∈ Cn : yi = 0 for i = 1, ..., n} .

Further, we use

‖z‖ =

(

n
∑

i=1

x2i +

n
∑

i=1

y2i

) 1

2

,

|z|2 =
n
∑

i=1

z2i .

The set

CN(p) =
{

q ∈ Cn : |p− q|2 = 0
}

is called the complex null cone of a point p ∈ Cn. The complex Laplace operator
is defined by

∆C =

n
∑

i=1

∂2

∂z2i
,

and its real version

∆R =
n
∑

i=1

∂2

∂x2i
.

Let CC
n be the complex Clifford algebra over C

n with the quadratic form −(z21 +

... + z2n). We denote by ei, i = 1, ..., n the canonical generators of C
C
n and define

the complex Dirac operator

DC =

n
∑

i=1

ei
∂

∂zi

and its real version

DR =
n
∑

i=1

ei
∂

∂xi

which act on S-valued functions, where S is any left ideal in CC
n .

The integral formulas we are going to use are typical for even dimensions. They
were first proved in En in [1] and they are analogous to the Cauchy formula for
holomorphic functions of one complex variable. For Laplace equation, they coincide



Envelopes of holomorphy for solutions of the Laplace and Dirac equations 481

with well known formulas for harmonic functions. In the complexification, they
are proved in homological form in [2]. This form is especially useful in higher
dimensions.
It is a typical feature of these formulas that the closed differential form under

the integral is not defined on the characteristic surface of the equation. In the
euclidean case, the singularity is just the point p and the value of the integral over
a closed (n− 1)-dimensional cycle depends only on its class in the homology group
Hn−1(E

n \ {p},Z). In the complexification, the singularity is more complicated:
it is the complex null cone CN(p). This leads to the notion of index of a point
p ∈ Cn with respect to an (n − 1)-dimensional cycle, where we suppose that the
cycle lies outside the singularity. In other words, we are interested in the homology
group Hn−1(C

n \ CN(p),Z). The situation is much more complicated than in the
euclidean case, where the group Hn−1(E

n \ {p} ,Z) is clearly a free abelian group
with one generator. To see that the same holds in the complexification, requires
much more effort.

Theorem 1. Let n be any positive integer. Then

Hn−1(C
n \ CN(p),Z) ≃ Z

and for ǫ > 0 the sphere

Sǫ
n−1(p) = {q ∈ Cn : p− q ∈ En, ‖p− q‖ = ǫ }

gives the generator of this group.

Definition 1. The number k for which γ is homological to kSǫ
n−1(p) is to be called

and denoted by indγ (p).

Let Ω be a domain in Cn. Let us consider solutions defined on Ω. In the
standard euclidean formulation of the Cauchy integral formula in homological form,
the domain Ω can be arbitrary, but the contour of integration must be homologically
trivial in Ω. The reason is that in this case γ is also homological to a small sphere
around p in Ω\ {p} and for the proof, it suffices to let the radius of the sphere go to
zero. The situation is quite different in the complex case. The difficulty lies in the
fact that it is no more true that a homologically trivial cycle must be homological
to a small (n − 1)-dimensional sphere around p in Ω \ CN(p). In other words, we
cannot replace Cn by an arbitrary domain Ω in Theorem 1. We have to impose
a restriction on Ω. The idea is that when γ is (during the deformation to a point)
near the cone CN(p) it must be possible to follow the rays on CN(p) toward the
point p. The following simple condition guarantees this.

Definition 2. We say that Ω ⊆ Cn is null-convex with respect to a point p ∈ Ω if
for all q ∈ Ω such that |p− q|2 = 0, the whole segment pq lies in Ω.

Theorem 2 (Integral formula for the complex Dirac operator). Let f be a solution

of the complex Dirac equation
n
∑

i=1

ei
∂f

∂zi
= 0 on Ω ⊆ Cn, where Ω is a null-convex
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domain with respect to a point p ∈ Ω. Let γ be an (n − 1)-dimensional cycle in
Ω \ CN(p) which is homologically trivial in Ω. Then

f(p) indγ (p) =
1

kn

∫

γ

−(p− z)

|p− z|n−2
dzf(z),

where kn is the area of the unit sphere in E
n.

Theorem 3 (Integral formula for the complex Laplace operator). Let f be a solu-
tion to the complex Laplace equation on a domain Ω ⊆ Cn null-convex with respect
to a point p ∈ Ω. Let γ be an (n − 1)-dimensional cycle in Ω \ CN(p) which is
homologically trivial in Ω. Then

f(p) indγ (p) =
1

kn

∫

γ

∑n
i=1(−1)

i(p− z)idẑi
|p− z|n

f(z) +

∑n
i=1(−1)

i ∂f

∂zi
dẑi

(n− 2)|p− z|n−2
,

where dẑi = dz1 ∧ ... ∧ dzi−1 ∧ dzi+1 ∧ · · · ∧ dzn.

The proofs of the theorems can be found in [2]. �

2. The holomorphic continuation of solutions from Euclidean domains.

All our further considerations are common to DC and ∆C . For simplicity, we
denote the corresponding operator by dC , so dC denotes either DC or ∆C . We use
the symbol dR in the same way. When we talk about a solution f : Ω → CC

n we
always mean that, for the Laplace operator, the solution has values in C, while for
the Dirac operator in S.

Let f(z1, z2, ..., zn) be a holomorphic function of n complex variables satisfying
the complex equation dCf = 0 in Ω. It follows immediately from Cauchy-Riemann

equations that
∂f

∂zi
=

∂f

∂xi
. So the restriction of f to En, a function of n real vari-

ables f(x1, x2, . . . , xn), satisfies the real equation dRf = 0 in E
n ∩Ω. On the other

hand, the real Laplace operator is elliptic and so isDR (see [1] for the proof). All so-
lutions to the equation dRf = 0 are therefore real analytic functions. Let Ω ⊆ En

be the domain of a solution. The corresponding power series at a point x has
a nonzero radius of convergence and so defines a holomorphic function on a neigh-
bourhood U(x) ⊆ Cn. The open set Ω̃ =

⋃

x∈Ω
U(x) is then a neighbourhood (in Cn)

of the original domain, and the solution can be holomorphically continued to Ω̃. Let
a domain M ⊆ En be given. We want to describe the largest domain M̃ ⊆ Cn to
which all the solutions defined on M extend holomorphically.

Definition 3. LetM be a domain inEn. The component of the setCn\
⋃

x∈∂M

CN(x)

which contains the interior of M is called the envelope of holomorphy of M and is
denoted by M̃ .
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Theorem 4. Let M be a domain in En.

(i) If f satisfies dRf = 0 onM , then there is a function f̃ : M̃ → CC
n such that

dC f̃ = 0 on M̃ and f̃ |M= f .

(ii) For each point x ∈ ∂M̃, there is a solution f̃x defined on M̃ which is un-
bounded in x.

Proof: (i) Put

f̃(p) =
1

indγ (p)

1

kn

∫

γ

−(p− z)

|p− z|n−2
dzf(z)

and

f̃(p) =
1

indγ (p)

1

kn

∫

γ

∑n
i=1(−1)

i(p− z)idẑi
|p− z|n

f(z) +

∑n
i=1(−1)

i ∂f

∂zi
dẑi

(n− 2)|p− z|n−2

for the Dirac and Laplace operators, respectively. The function f̃ is holomorphic
and since the same formulas hold for f(x), x ∈M , we have f̃ |M= f .
(ii) Since x ∈ ∂M̃ , there is x0 ∈ ∂M such that |x− x0|

2 = 0. The map

f̃x(z) =
1

|z − x0|n−2

is an elementary solution of the Laplace equation. It is defined on M̃ and unbounded
in x. For the Dirac equation, we take similarly

f̃x(z) =
z − x0

|z − x0|n
.

�

So M̃ has the required properties, but its definition is not constructive and gives
almost no information about M̃ . Our aim is to describe M̃ geometrically, as far as
possible.
The first question is which parts of the null cones really form the boundary. The

following theorem says in which directions the boundary of M̃ lies.

Theorem 5. Let p ∈ ∂M and let ∂M be smooth in p. Let n denote the unit inner
normal vector to ∂M in p. Suppose that a point of the form p + z lies on ∂M̃ ,
where z = x+ iy is a null vector. Then there is a complex number c, Re(c) > 0 and
a tangent vector u ∈ Tp∂M such that

(1) z = c(n+ iu).

Proof: Let p̃ = p+ z lie on ∂M̃ . Then CN(p̃) ∩En lies in M and it has at least
one point in common with ∂M , namely p. For the tangent space at the point p, the
intersection with CN(p̃) is just p:

(2) CN(p̃) ∩ (Tp∂M)p = {p}.
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Take u ∈ Tp∂M , u 6= 0. From (2), we get

|z − u|2 6= 0.

Let us examine the equation

|z − s|2 = −2
n
∑

i=1

zisi + ‖s‖2 = 0.

It has a non-zero solution in Tp∂M if and only if there is a vector s such that

n
∑

i=1

sixi 6= 0 and
n
∑

i=1

siyi = 0.

Such a vector does not exist, hence there exist a1, a2 ∈ R for which

x = a1n+ a2y.

Moreover, a1 > 0, because CN(p̃) ∩ E
n lies inside M . We put c1 =

a1

a22 + 1
, c2 =

−a1a2
a22 + 1

and for c = c1 + ic2 and u = −
c2n+ y

c1
, we get the equality (1). �

The following lemma gives a correspondence between Cn \ En and (n − 2)-
dimensional spheres in En.

Lemma. Let S be an (n − 2)-dimensional sphere in En. Then there is a point
z ∈ Cn such that

CN(z) ∩En = S.

Proof: Let x be the center of S, a the radius and y the unit normal vector to the
hyperplane spanned by S. Then z = x+ iay has the required property. �

Remark: The point z may be replaced by z, but up to this change, the corre-
spondence is one-to-one.

Two main theorems of this section follow. The first one describes the boundary
of M̃ “almost everywhere” as a smooth (2n− 1)-dimensional manifold.

Theorem 6. Let M ⊆ En be a domain with a smooth boundary. Then the
boundary of M̃ contains a smooth (2n−1)-dimensional manifold which is open and

dense in ∂M̃ .

Proof: 1. Consider first h ∈ ∂M̃ with the properties:

(i) CN(h) ∩ ∂M = {p0}.
(ii) We have (compare (1) in Theorem 5)

h = p0 + z0 = p0 + c0(n0 + iu0), c0 = c1 + ic2, c1 > 0, z0 = x0 + iy0,

where ‖c0‖ is less than the maximal radius of spheres which lie in M in the
plane perpendicular to y0 and which touch ∂M in the point p0.
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The set of all such points h is open in ∂M̃ . Our aim is to prove that Th∂M̃
exists. Let t = (t1, t2, ..., tn−1) be cartesian coordinates on Tp0∂M with respect
to a basis (τ1, τ2, ..., τn−1) such that τi ⊥ y0 for i = 1, 2, ..., n − 2. We have x0 =
c1n0 − c2u0, so x0 /∈ Tp0∂M and p = (t1, t2, ..., tn−1, x

′) are coordinates on En,
where the last coordinate is taken with respect to the vector x0. The boundary
of M is locally described by a function f = f(t) in such a way that a point p lies
in ∂M if and only if p = p(t) = (t, f(t)). Let us denote the unit sphere in En by
Sn−1 and the (n − 2)-dimensional sphere in En perpendicular to n0 by Sn−2. Let
v = (v1, v2, ..., vn−2) be coordinates on a neighbourhood of the point u0 in Sn−2

and let u(v1, ..., vn−2, t1, ..., tn−1) be a smooth map with values in Sn−1 defined on
a neighbourhood of the point (u0, p0) such that u(u0, p0) = u0 and u(v, t) ⊥ n(t),
where n(t) is the unit normal vector to ∂M in a point p(t), and for fixed t, u(v, t)
is a diffeomorphism. By Theorem 5 and by our assumptions about the point h, the
map

Φ(t, c, v) = p(t) + c(n(t) + iu(v, t))

describes the boundary ∂M̃ in a neighbourhood of the point h, i.e. b ∈ ∂M̃ if
and only if b ∈ ImΦ. The map Φ is smooth. We have to prove that the rank
of the tangent map is maximal, i.e. that the partial derivatives with respect to

ti, ci, vi are linearly independent. The vectors
∂Φ

∂c1
= n0 + iu0,

∂Φ

∂c2
= in0 − u0

span a two dimensional space N . The vectors i
∂Φ

∂vi
are, by the assumption about

Φ, independent, and they span an (n − 2)-dimensional space Q in En which is
perpendicular to n0 and u0, because

(
∂u

∂vi
, u) =

1

2

∂

∂vi
(u, u) = 0.

Therefore Q is perpendicular to x0 and y0.
We introduce new coordinates x = (c1n − c2u)/‖c‖, y = (c2n + c1u)/‖c‖ and

express vectors

∂Φ

∂ti
=
∂p

∂ti
+ c(

∂n

∂ti
+ i

∂u

∂ti
)

with respect to x and y:

∂Φ

∂ti
=
∂p

∂ti
+ ‖c‖(

∂x

∂ti
+ i

∂y

∂ti
).

Using identity
∂

∂ti
(y, x) = (

∂y

∂ti
, x) + (y,

∂x

∂ti
) = 0, we get

i
∂y

∂ti
= i

[

∂y

∂ti
− (

∂y

∂ti
, x)x

]

− i

[

(y,
∂x

∂ti
)x+ i(y,

∂x

∂ti
)y

]

− (y,
∂x

∂ti
)y.
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The first term belongs to iQ, the second to N . So it is sufficient to prove that the
vectors

∂p

∂ti
− ‖c‖

[

−(y,
∂x

∂ti
)y +

∂x

∂ti

]

are independent, where the term in brackets is a projection of
∂x

∂ti
to the plane

perpendicular to x and y. From the definition of f , we have

x =
( ∂f
∂t1

, ..., ∂f
∂tn−1

, 1)
√

1 +
∑n−1

i=1

(

∂f
∂ti

)2
,

∂x

∂ti
=

(

∂2f

∂t1∂ti
, ...,

∂2f

∂tn−1∂ti
, 0

)

.

Projecting this vector to the plane perpendicular to x and y, we get

(

∂2f

∂t1∂ti
, ...,

∂2f

∂tn−2∂ti
, 0, 0

)

.

Further, we have
∂pj

∂ti
= δij . We will prove the linear independence of the vectors

by proving that the (n− 1)× n matrix







1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0






− ‖c‖









∂2f
∂t2
1

. . . ∂2f
∂tn−2∂t1

0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂2f
∂t1∂tn−1

. . . ∂2f
∂tn−2∂tn−1

0 0









has rank n− 1. As the (n− 1)-st column is independent, we will omit the two last
columns and the last row and show that the symmetric (n− 2)× (n− 2) matrix B
defined in this way is positively definite and so regular.
Let w = (t1, t2, ..., tn−2) be a unit vector. We have

B(w,w) = 1− ‖c‖
∂2f

∂w2
> 0,

because ‖c‖ is less than the radius of the sphere which touches ∂M in the point p,

so ‖c‖ <
1

∂2f
∂w2

.

2. Now let h ∈ ∂M̃ be arbitrary. We shall show that in every neighbourhood
of h, there is a point h′ which satisfies the conditions (i) and (ii) from the first part

of the proof. Let ǫ > 0. Take h0 ∈ M̃ ∩ U(h, ǫ) and let S = CN(h0) ∩ E
n. So we

have
dist(S, ∂M) = δ > 0.
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Take x ∈ ∂M such that

dist(x, S) = δ.

Then the sphere S shifted by the vector δ(Reh0− x) meets ∂M just in the point x.
By Lemma, there is a point h′ for which CN(h′) ∩ En is just this shifted sphere.
Such h′ satisfies the conditions (i), (ii) and

‖h− h′‖ ≤ ‖h− h0‖+ ‖h0 − h′‖ < ǫ + δ ≤ 2ǫ .

�

Theorem 7. LetM ⊆ En, p ∈ ∂M and ∂M be smooth in p. Let p̃ = p+z ∈ ∂M̃ ,
where z = c(n+ iu) be a vector such that Tp̃∂M̃ exists. Then the vector

z′ =
1

c
z = n− iu

is a normal vector to ∂M̃ at the point p̃.

Proof: It suffices to realize that all vectors
∂Φ

∂ti
,
∂Φ

∂ci
,
∂Φ

∂vi
in the proof of Theorem 6

are perpendicular to n− iu. �

3. Generalized envelopes of holomorphy.

As we have already seen, every solution to the equation dRf = 0 on a domain
M ⊆ En has a natural holomorphic extension to the envelope of holomorphy M̃ .
Now we adopt a more general point of view. We are interested in properties of solu-
tions to the complex equation dCf = 0 and in this context, contours of integration
which lie entirely in En in integral formulas from Theorem 2 and 3, have no special
importance. If a solution to the equation dCf = 0 on a domain Ω ⊆ Cn and a cycle
γ ⊆ Ω are given in such a way that the integral formula holds, we can use it to
extend the solution to a larger domain.

The integral formulas are of the form

f(p) indγ (p) =
1

kn

∫

γ
ωd(f, p),

where ωd is a closed differential form and the integral is not defined for p in
CN(γ ) =

⋃

x∈γ
CN(x).

Let us consider the following case, where the conditions on Ω and γ are chosen in
such a way that the integral formulas are valid. Let Ω ⊆ Cn be a domain and γ be
a cycle on its boundary such that CN(γ )∩Ω = ∅. Moreover let γ be homologically
trivial in Ω ∪ γ and indγ (p) 6= 0 for some (and so for any) p ∈ Ω.
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Definition 4. Let us denote by Ω̃ the corresponding component of the set Cn \
CN(γ ) determined by Ω. For a continuous function f defined on Ω ∪ γ and

satisfying in Ω the equation dCf = 0, we define a function f̃ by

f̃(p) =
1

indγ (p)

1

kn

∫

γ
ωd(f, p).

The function f̃ is holomorphic. We need some further assumption to prove that
it is the extension of f .

Theorem 8. Suppose that there is a point p ∈ Ω such that for some ǫ < dist(p, ∂Ω),

we have γ ∼ kSǫ
n−1(p) in Ω \ CN(p) for some k ∈ Z. Then f̃ | Ω = f .

Proof: Let B ⊆ Ω be open ball with center p and radius ǫ . Then B is null-convex,
so by Theorems 3 and 4

f(p) =
1

k

1

kn

∫

kSn−1

ωd(f, p).

It follows from the definition of index that k = indγ (p), so by the assumption
k 6= 0. The differential form ωd(f, p) is closed, so the value of the integral over

homologically equivalent cycles is the same and f̃(p) = f(p).

Let us take y ∈ B such that ‖p− y‖ <
ǫ

2
. Then γ ∼ kS

ǫ

2

n−1(y) and by the same

argument f̃(y) = f(y). Since f and f̃ are holomorphic, we have f = f̃ on Ω. �

Let us consider a real n-dimensional smooth manifold with boundary M ⊆ Cn

and consider points p ∈ intM such that the following condition is satisfied:

(A) CN(p) ∩M = {p}.

The following theorem was proved by J.Ryan in [4].

Theorem 9. If M ⊆ Cn is a real, n-dimensional smooth manifold with boundary
which satisfies the condition (A) at every point p ∈M and if for every p ∈M

(B) CN(p) ∩ (TpM)p = {p},

then each solution defined on a neighbourhood of M can be extended to M̃ .

As an easy consequence of Theorem 8, we get the following substantial general-
ization of Theorem 9.

Theorem 10. Let f be a solution to the equation dCf = 0 which is defined on
a neighbourhood U of the manifold M and suppose that there is a point p ∈ intM
with the property (A). Then there is a function f̃ defined on M̃ such that dC f̃ = 0

and f̃ = f on M , where M̃ is the component of Cn \ CN(∂M) determined by M .

Proof: The smoothness of M implies that ∂U(p, ǫ ) is transversal to M for suf-
ficiently small ǫ . So ∂U(p, ǫ ) ∩M is an (n − 1)-dimensional cycle which, by the
property (A), is homological to ∂M in U \ CN(p). We have

Hn−1(U(p, ǫ ) \ CN(p),Z) ≃ Hn−1(C
n \CN(p),Z) ≃ Z.
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We can take Sǫ
n−1(p) as a generator of this group, so for some k we have ∂M ∼

kSǫ
n−1(p) in U \ CN(p). The rest is a consequence of Theorem 8. �

The next theorem says that for null-convex domains we can always apply Theo-
rem 8.

Theorem 11. If Ω is a null-convex domain with respect to a point p ∈ Ω, then
γ ∼ kSǫ

n−1(p) in Ω \ CN(p).

Proof: Put A = Cn \ CN(p) and consider the standard Mayer-Vietoris sequence

Hn(A ∪ Ω,Z)→ Hn−1(A ∩Ω,Z)→ Hn−1(A,Z) ⊕Hn−1(Ω,Z)→ Hn−1(A ∪ Ω,Z)

which is exact and Hk(A∪Ω,Z) = 0 for k = n, n− 1, because A ∪Ω is star-convex
with respect to p. Thus we have an isomorphism

Hn−1(A ∩ Ω)
i
−→ Hn−1(A,Z)⊕Hn−1(Ω,Z).

But γ ∼ 0 in Ω ∪ γ by the assumption and γ ∼ kSǫ
n−1(p) in A for some k by

Theorem 1. So γ ∼ kSǫ
n−1(p) in A ∩ Ω = Ω \ CN(p). �

Theorem 10, though it has weaker assumptions than Theorem 9, is still not very
natural. It contains an assumption on the interior of M which does not appear in
the integral formulas at all. Our aim is to find natural conditions on Ω and γ which
will guarantee that the function f̃ is an extension of f to Ω̃.
In the following theorem, we still suppose that γ is the boundary of a smooth

manifold M , but all other assumptions involve only γ and Ω.

Theorem 12. Let γ = ∂M and let p0 ∈ γ be such that CN(p0) ∩ γ = {p0} and
Tp0M ∩ CN(p0) = {p0}. Then there is a point p̃ ∈ intM such that γ ∼ kSǫ

n−1(p̃)

in Ω \ CN(p̃).

Proof: We shall show that there is a point p̃ ∈ intM such that CN(p̃)∩M = {p̃}.
Then we will have

∂M ∼ kSǫ
n−1(p̃) in Ω \ CN(p̃)

by Theorem 10.
Let us first prove the following statement.

(S) There are ǫ and δ > 0 such that for every y ∈ U(p0, δ ) ∩M

CN(y) ∩ U(y, ǫ ) ∩M = {y}.

Let us suppose, to get a contradiction, that for each n ∈ N there are an, bn ∈M
such that

‖po − an‖ <
1

n
, ‖bn − an‖ <

1

n
and (an − bn) ∈ CN.

Let t ∈ CN be an accumulating point of the sequence of unit vectors (an−bn)/‖an−
bn‖. Let ψ1, ..., ψn be smooth functions defined on a neighbourhood U of p0 such
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that M ∩ U is a subset of the set N = {z ∈ U : ψi(z) = 0, i = 1, ..., n} and the
rank of the matrix

(

∂ψi

∂xj
,
∂ψi

∂yj

)j=1,...,n

i=1,...,n

is maximal in the point p0. In other words,

v ∈ Tp0M iff
∂ψi

∂v
|p0= 0 for i = 1, ..., n.

Since t /∈ Tp0M , there is an index i such that
∂ψi

∂t
|p0 6= 0. It follows from the

smoothness of ψi that there is ν > 0 such that for y ∈ U(p0, ν) and t
′ ∈ U(t, ν)

there is
∂ψi

∂t′
|y 6= 0. So there is n ∈ N such that for w = (an − bn)/‖an − bn‖ we

have
∂ψi

∂w
|y 6= 0

in every point y of the segment anbn.
On the other hand, by Rolle theorem, there is ξ ∈ anbn such that

∂ψi

∂w
|ξ= 0,

which is a contradiction. Thus we have proved the statement (S).
Put ǫ 1 = dist(CN(p0), (M \ U(p0,

ǫ
2 )). If ǫ 2 < min(δ , ǫ 1), then for y ∈

U(p0, ǫ 2) ∩ intM , we have

CN(y) ∩ (M \ U(y,
ǫ

2
)) = ∅

by the choice of ǫ 2 and

CN(y) ∩M ∩ U(y,
ǫ

2
) = {y}

by (S). Thus we have found y ∈ intM for which CN(y) ∩M = {y}. �

Now we formulate the main theorem.

Definition 5. We say that a boundary of a domain Ω ⊆ Cn is Lipschitz in
a point x0 ∈ ∂Ω if there are real numbers µ > 0, δ > 0, cartesian coordinates
(x1, ..., x2n) = (x

′, x2n) and a Lipschitz function a(x
′), defined on ∆ = {x′ : |xi| <

µ for i = 1, ..., 2n− 1} such that

x0 = (0, a(0)),(1)

if x = (x′, a(x′)) for some x′, then x ∈ ∂Ω ,(2)

U+δ = {(x′, x2n) : a(x
′) < x2n < a(x′) + δ } ⊆ Ω,(3)

U−
δ = {(x′, x2n) : a(x

′)− δ < x2n < a(x′)} ⊆ Cn \ Ω.(3’)
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Theorem 13. Let Ω be a domain in Cn, γ ⊆ ∂Ω be a smooth closed manifold
(without boundary) of real dimension n−1which is homologically trivial in Ω∪γ and
Ω ∩CN(γ ) = ∅. Let x0 ∈ γ be such that ∂Ω is Lipschitz in x0 and the following
two conditions are satisfied:

(i) Tx0γ ∩ CN(x0) = {x0},
(ii) γ ∩ CN(x0) = {x0}.

Then for each continuous function f : Ω ∪ γ → CC
n which is holomorphic and

satisfies the equation dCf = 0 in Ω, there is a holomorphic function f̃ defined on Ω̃
such that f̃ |Ω= f and dC f̃ = 0 on Ω̃.

Proof: We will proceed in this way: first, we shall prove that the surface consisting
of straight lines passing through γ in the direction x2n lies outside CN(x0) in
a neighbourhood of x0. Then we shall remove a small neighbourhood of x0 from
the set Ω∪γ and in the remaining part we shall find a homologically trivial cycle Σ,
which differs from γ only by the boundary of a manifold which does not contain
null segments (part of the constructed line surface). Then we shall show that there
is a point v of this manifold such that γ ∼ kSǫ

n−1(v) and we shall apply Theorem 8.
Let (x1, ..., x2n) be cartesian coordinates from Definition 5. Let us denote by

ẋ2n the unit vector in the direction of the last coordinate. Since a is Lipschitz, we
have ẋ2n /∈ Tx0γ . Let us consider a cylinder:

Vǫ = {(x′, x2n) : ‖x
′‖ ≤ ǫ }.

We shall prove the following statement

(S) There is ǫ 1 > 0 such that ∂Vǫ 1 intersects γ transversally.

Let us define the angle between two sets A and B with A ∩B = {p}:

∠(A,B) = arccos









sup
a∈A\{p}
b∈B\{p}

∣

∣

∣

∣

(a− p, b− p)

‖a− p‖‖b− p‖

∣

∣

∣

∣









.

It follows from the condition (i) that there is ǫ 2 > 0 such that for U(x0, ǫ 2) ∩ γ
and the axis < x2n > of Vǫ we have

(1) ∠(U(x0, ǫ 2) ∩ γ , < x2n >) = α > 0.

Further it follows from the smoothness of γ that there is ǫ 1 < ǫ 2 such that for
each y ∈ U(x0, ǫ 1) ∩ γ there is t ∈ Tyγ such that

(2) ∠(< t >,< y − x0 >) < α.

Let v ∈ ∂Vǫ 1 ∩ γ . From (1) we get

∠(< v − x0 >,< x2n >) > α
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and also

(3) ∠(< v − x0 >, Tv∂Vǫ 1) > α.

Let us apply (2) to v. There is t ∈ Tvγ such that

(4) ∠(< t >,< v − x0 >) < α

It follows from (3) and (4) that

∠(< t >, Tv∂Vǫ 1) > 0,

so t /∈ Tv∂Vǫ 1 , in other words Tv∂Vǫ 1 ⊕ Tvγ = R
2n, concluding the proof of (S).

By the assumptions, < x2n > and Tx0γ lie outside CN(x0). We shall prove that
moreover

(5) (Tx0γ ⊕ < x2n >) ∩ CN(x0) = {x0}.

It follows from the lipschitz condition that there is ξ, 0 < ξ < δ such that the set

E =
⋃

x∈γ

{y ∈ Cn : ‖x−y‖ < ξ & (y−x, ẋ2n) > 0 & ∠(< y−x >,< x2n >) < ξ}

lies in Ω. Take t ∈ Tx0γ , ‖t‖ = 1 and A ∈ R and prove that the vector v = t+Ax2n
does not belong to CN . It suffices to find µ > 0 such that p = x0 + µv ∈ Ω

, for Ω ∩ CN(x0) = ∅. Choose µ < min( ξ
A ,

1
2A ) with the property that there is

y ∈ γ ∩ U(x0, µ) such that

‖(x0 + µt)− y‖ < µξA.

Put p′ = y + µAẋ2n. We have p
′ ∈ U+

δ
⊆ Ω. Further

‖p− p′‖ < µξA,

so ∠(< p− y >,< p′ − y >) < ξ and µv ∈ E ⊆ Ω , which proves (5).
It follows from (5) that there is ǫ 3 such that for every y ∈ U(x0, ǫ 3)∩γ , the line

passing through the point y in direction x2n does not intersect CN(x0). Finally,
put ǫ = min(ǫ 1, ǫ 3). Let us denote

A = (U+δ ∪ γ ) ∩ intVǫ ,

B = (Ω ∪ γ ) \ (U+
δ

3

∩ V ǫ

3
),

β = γ ∩ ∂V ǫ

2

.

By (S), β is a closed (n−2) dimensional manifold with the orientation induced from
γ ∩ V ǫ

2

. We define a chain

γ 1 =
⋃

x∈β

{y = (y′, y2n) : y′ = x′ & a(x′) ≤ y2n ≤ a(x′) +
δ

2
},
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so γ 1 ≃ β× [0, δ
2 ]. We define the orientation on γ 1 in such a way that the induced

orientation on β×[0] is the same as on β. Further we define a new (n−1)-dimensional
chain Σ ⊆ B:

Σ = (γ \ intV ǫ

2

) + γ 1 + (γ ∩ V ǫ

2

)1 ,

where (γ ∩ V ǫ

2

)1 is (γ ∩ V ǫ

2

) shifted by the vector δ
2 ẋ2n. Now, Σ is a cycle,

because the boundaries of γ 1 and the other two chains cancel. We will show that
Σ is trivial in B. Applying Maier-Vietoris sequence, since A ∩B is trivial, there is
an isomorphism

Hn(A)⊕Hn(B)→ Hn(A ∪B)

sending the class [Σ − γ ] + [Σ] to [γ ]. But (Σ − γ ) ∼ 0 in A, because A is
homologically trivial, and γ ∼ 0 in A ∪ B = Ω ∪ γ . So also Σ ∼ 0 in B. Let
us denote by K1 the complex in B for which ∂K1 = Σ. The cycle Σ − γ is the
boundary of

K2 = (V ǫ

2

∩ γ )× [0,
δ

2
].

So for K = K1 +K2, we have ∂K = γ . From the assumption CN(x0) ∩ Ω = ∅,
and we get

(6) dist(K1, CN(x0)) > ν > 0

for some ν < δ . Let us denote q = x0 + νẋ2n. We have

CN(q) ∩K1 = ∅

by (1) and

CN(q) ∩K2 = {q}

by (5), because K2 consists of segments in the direction x2n which do not intersect
CN(x0), hence not CN(q). The same argument as in the proof of Theorem 12
shows that

γ ∼ kSǫ
n−1(q) in Ω \ CN(q).

By Theorem 8, we can extend all solutions from Ω ∪ γ to Ω̃. �
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