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Envelopes of holomorphy for solutions
of the Laplace and Dirac equations

MARTIN KOLAR

Abstract. Analytic continuation and domains of holomorphy for solution to the complex
Laplace and Dirac equations in C"™ are studied. First, geometric description of envelopes of
holomorphy over domains in E” is given. In more general case, solutions can be continued
by integral formulas using values on a real n — 1 dimensional cycle in C™. Sufficient
conditions for this being possible are formulated.

Keywords: envelope of holomorphy, integral formula, index, null-convexity, complex null
cone, Lipschitz boundary

Classification: 32D10, 30G35

Introduction.

The aim of this paper is to give a geometric description of natural domains of
holomorphy for solutions of the complex Laplace and Dirac equations. From one
point of view, it is analogous to the study of domains of holomorphy for functions
of several complex variables. Instead of holomorphic functions, we consider holo-
morphic solutions to complex partial differential equations.

The study of partial differential equations on domains in C™ was inspired by
quantum field theory. One of the fundamental questions that arose in the physical
context was that of analytic continuation of solutions and of domains of holomorphy.
There is a substantial difference between even and odd dimensions. We will confine
ourselves to the case of even dimension, n = 2k.

In the part 2, we consider the basic case of the continuation of solutions from E™
to C™. Given a domain in E™ we describe a corresponding domain in C", the en-
velope of holomorphy, with the property that every solution on the original domain
extends to a holomorphic solution on the envelope of holomorphy. These domains
were previously described in [4], [5]. We give a new, constructive description of
envelopes of holomorphy.

J. Ryan further generalized Euclidean domains to a certain class of real n-dimen-
sional manifolds with boundary in C" (see [4]). He used the generalized Cauchy
integral formula to give other examples of envelopes of holomorphy. In the part 3,
we apply more efficient integral formulas, introduced in the part 1, to show that we
need only an (n — 1)-dimensional real closed manifold (which may but need not be
given as the boundary of an n-dimensional surface) to be able to holomorphically
continue the solutions.
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480 M. Kolaf

1. Integral formulas for the Dirac and Laplace equations.

For z € C", let z = (21,...,2n), 2; = x; + iy;. Let E™ denote the Euclidean
subspace of C™:
E'={ze€C":y;=0fori=1,..,n}.

Further, we use

n n %
ol = <Zx? +Zy§> |
=1 =1
n
2% = Zz?
=1

The set
CN(p) = {qu":IP—QI2=0}

is called the complex null cone of a point p € C™. The complex Laplace operator
is defined by

Ao = —,
¢ Z 922

i=1 ?

and its real version
n

62

Ap = —

R Z 2

i=1 ¢

Let Cg be the complex Clifford algebra over C™ with the quadratic form —(z% +

R Z%) We denote by e;,i = 1,...,n the canonical generators of Cg and define
the complex Dirac operator

and its real version

which act on S-valued functions, where S is any left ideal in C§.

The integral formulas we are going to use are typical for even dimensions. They
were first proved in E™ in [1] and they are analogous to the Cauchy formula for
holomorphic functions of one complex variable. For Laplace equation, they coincide
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with well known formulas for harmonic functions. In the complexification, they
are proved in homological form in [2]. This form is especially useful in higher
dimensions.

It is a typical feature of these formulas that the closed differential form under
the integral is not defined on the characteristic surface of the equation. In the
euclidean case, the singularity is just the point p and the value of the integral over
a closed (n — 1)-dimensional cycle depends only on its class in the homology group
Hy,_1(E™\ {p},Z). In the complexification, the singularity is more complicated:
it is the complex null cone CN(p). This leads to the notion of index of a point
p € C™ with respect to an (n — 1)-dimensional cycle, where we suppose that the
cycle lies outside the singularity. In other words, we are interested in the homology
group H,_1(C"™\ CN(p),Z). The situation is much more complicated than in the
euclidean case, where the group H,—1(E™ \ {p},Z) is clearly a free abelian group
with one generator. To see that the same holds in the complexification, requires
much more effort.

Theorem 1. Let n be any positive integer. Then
Hy—1(C"\ CN(p), 2) ~ Z
and for e > 0 the sphere

no1p) ={¢€C":p—q€eE" p—dqll=¢}
gives the generator of this group.

Definition 1. The number £ for which v is homological to £S;,_;(p) is to be called
and denoted by ind~ (p).

Let 2 be a domain in C". Let us consider solutions defined on Q. In the
standard euclidean formulation of the Cauchy integral formula in homological form,
the domain €2 can be arbitrary, but the contour of integration must be homologically
trivial in Q. The reason is that in this case v is also homological to a small sphere
around p in Q\ {p} and for the proof, it suffices to let the radius of the sphere go to
zero. The situation is quite different in the complex case. The difficulty lies in the
fact that it is no more true that a homologically trivial cycle must be homological
to a small (n — 1)-dimensional sphere around p in Q \ CN(p). In other words, we
cannot replace C" by an arbitrary domain 2 in Theorem 1. We have to impose
a restriction on €. The idea is that when 7 is (during the deformation to a point)
near the cone C'N(p) it must be possible to follow the rays on CN(p) toward the
point p. The following simple condition guarantees this.

Definition 2. We say that 2 C C" is null-convex with respect to a point p € Q if
for all ¢ € Q such that [p — ¢|?> = 0, the whole segment pq lies in Q.

Theorem 2 (Integral formula for the complex Dirac operator). Let f be a solution

of

— = QcCccr
P 0onC

n
of the complex Dirac equation Z e; where € is a null-convex

i=1

)
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domain with respect to a point p € Q. Let v be an (n — 1)-dimensional cycle in
O\ CN(p) which is homologically trivial in Q. Then

fwyind )= - [ O deg),

where ky, is the area of the unit sphere in E™.

Theorem 3 (Integral formula for the complex Laplace operator). Let f be a solu-
tion to the complex Laplace equation on a domain 2 C C™ null-convex with respect
to a point p € Q. Let v be an (n — 1)-dimensional cycle in Q\ CN(p) which is
homologically trivial in ). Then

n Of
1/ n(—1)i(p — 2)d5 2im (D5
g

f(p)lnd’Y (p) = E |p—Z|” f(2)+ (n_2)|p_z|n—2 )

where dZ; = dz1 A ... Adzj_1 Ndzip1 A --- N dzp.

The proofs of the theorems can be found in [2]. O

2. The holomorphic continuation of solutions from Euclidean domains.

All our further considerations are common to Do and Ag. For simplicity, we
denote the corresponding operator by d¢, so d¢ denotes either D or A. We use
the symbol dp in the same way. When we talk about a solution f : Q — Cg we
always mean that, for the Laplace operator, the solution has values in C', while for
the Dirac operator in S.

Let f(z1,22,...,2n) be a holomorphic function of n complex variables satisfying
the complex equation dg f = 0 in . It follows immediately from Cauchy-Riemann

equations that 2)_5 = ng So the restriction of f to E™, a function of n real vari-
ables f(x1,x2,... ,an), sa%cisﬁes the real equation dgf = 0 in E" N Q. On the other
hand, the real Laplace operator is elliptic and so is D (see [1] for the proof). All so-
lutions to the equation dr f = 0 are therefore real analytic functions. Let 2 C E™
be the domain of a solution. The corresponding power series at a point = has
a nonzero radius of convergence and so defines a holomorphic function on a neigh-

bourhood U(x) € C™. The openset Q = |J U(x) is then a neighbourhood (in C™)
e

of the original domain, and the solution can be holomorphically continued to Q. Let

a domain M C E™ be given. We want to describe the largest domain M C C™ to

which all the solutions defined on M extend holomorphically.

Definition 3. Let M be a domain in E”. The component of the set C™\ |J CN(z)
x€OM
which contains the interior of M is called the envelope of holomorphy of M and is

denoted by M.
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Theorem 4. Let M be a domain in E".

(i) If f satisfies drf =0 on M, then there is a function f: M — CS such that
dcf—OonMandf|M f.

(ii) For each point & € OM, there is a solution f, defined on M which is un-
bounded in x.

PROOF: (i) Put

SRV B G R N
0= s | o= e)

and

T
v e SRy
SIS B R v/ STC )V o
10 = i | S g e

dz;

for the Dirac and Laplace operators, respectively. The function f is holomorphic
and since the same formulas hold for f(z), x € M, we have f |y/= f.
(ii) Since & € OM , there is xg € M such that [z — 29|?> = 0. The map

fols) = ——

|z — 2|72

is an elementary solution of the Laplace equation. It is defined on M and unbounded
in z. For the Dirac equation, we take similarly

~ z—x0

fo(2) =

|z — zg|?
O

So M has the required properties, but its definition is not constructive and gives
almost no information about M. Our aim is to describe M geometrically, as far as
possible.

The first question is which parts of the null cones really form the boundary. The
following theorem says in which directions the boundary of M lies.

Theorem 5. Let p € OM and let OM be smooth in p. Let n denote the unit inner
normal vector to OM in p. Suppose that a point of the form p + z lies on M ,
where z = x4+ iy is a null vector. Then there is a complex number ¢, Re(c) > 0 and
a tangent vector u € T,0M such that

(1) z =c(n +iu).
PROOF: Let j = p + z lie on M . Then CN(p) N E™ lies in M and it has at least

one point in common with M, namely p. For the tangent space at the point p, the
intersection with C'N(p) is just p:

(2) CN () N (Tp0M)p = {p}-
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Take w € Tp,0M, v # 0. From (2), we get
|z —ul? £ 0.

Let us examine the equation
n
|z —s]? = —2222-52- + s = 0.
i=1
It has a non-zero solution in 7,0M if and only if there is a vector s such that
n n
Z s;x; £ 0 and Zsly, =0.
i=1 i=1

Such a vector does not exist, hence there exist ay,a2 € R for which

r = ain + agy.

Moreover, a; > 0, because CN(p) N E™ lies inside M. We put ¢; = a;j_ 1,02 =
2

—2a1a2 and for ¢ = ¢; +icg and u = — il y’ we get the equality (1). O

az +1 c1

The following lemma gives a correspondence between C™ \ E" and (n — 2)-
dimensional spheres in E™.

Lemma. Let S be an (n — 2)-dimensional sphere in E™. Then there is a point
z € C™ such that
CN(z)NE" = S.

PROOF: Let x be the center of S, a the radius and y the unit normal vector to the
hyperplane spanned by S. Then z = = 4 iay has the required property. O

Remark: The point z may be replaced by Z, but up to this change, the corre-
spondence is one-to-one.

Two main theorems of this section follow. The first one describes the boundary
of M “almost everywhere” as a smooth (2n — 1)-dimensional manifold.

Theorem 6. Let M C E" be a domain with a smooth boundary. Then the
boundary of M contains a smooth (2n — 1)-dimensional manifold which is open and
dense in OM .
PROOF: 1. Consider first h € M with the properties:

(i) ON(h) N OM = {po}.

(ii) We have (compare (1) in Theorem 5)

h =po + 20 = po + co(no +iug), co=c1+ica, c1 >0, 29=x0+ 1Yo,

where ||cg|| is less than the maximal radius of spheres which lie in M in the
plane perpendicular to yg and which touch M in the point pg.
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The set of all such points A is open in M . Our aim is to prove that 7),0M
exists. Let ¢t = (t1,%2,...,tn—1) be cartesian coordinates on Tp,,0M with respect
to a basis (71,72, ..., Tn—1) such that ; L yg for i = 1,2,...,n — 2. We have z¢ =
cing — caug, so kg & Tp,OM and p = (t1,t2,...,tn—1,2’) are coordinates on E",
where the last coordinate is taken with respect to the vector xg. The boundary
of M is locally described by a function f = f(¢) in such a way that a point p lies
in OM if and only if p = p(t) = (¢, f(t)). Let us denote the unit sphere in E™ by
Sn—1 and the (n — 2)-dimensional sphere in E" perpendicular to ng by S,—2. Let
v = (v1,v2, ..., un—2) be coordinates on a neighbourhood of the point ug in S,—2
and let u(vy, ..., vp—2,t1,...,tn—1) be a smooth map with values in S,,_ defined on
a neighbourhood of the point (ug, pg) such that u(ug, pg) = ug and u(v,t) L n(t),
where n(t) is the unit normal vector to OM in a point p(t), and for fixed ¢, u(v,t)
is a diffeomorphism. By Theorem 5 and by our assumptions about the point h, the
map

®(t,c,v) = p(t) + c(n(t) + iu(v,t))

describes the boundary &M in a neighbourhood of the point h, ie. b € M if
and only if b € Im®. The map P is smooth. We have to prove that the rank
of the tangent map is maximal, i.e. that the partial derivatives with respect to

0P
t;, ci,v; are linearly independent. The vectors — = ng + iug, =— = ing — ug
Ocy Oca
0P
span a two dimensional space N. The vectors za— are, by the assumption about
Vi

®, independent, and they span an (n — 2)-dimensional space @ in E™ which is
perpendicular to ng and ug, because

ou

10
(6—W7U) = 58—%,(%”) =0.

Therefore @ is perpendicular to zg and yg.
We introduce new coordinates x = (cin — cou)/||c|l, y = (can + ci1u)/||c|| and
express vectors

o® Op on . Ou

o, ot o T 'ar,)
with respect to  and y:

0®  Op or Oy

ot; ot *lle H(at t at)

dy ox

0
Using identity — ot (y,x) = ((% x) + (v, 8_t,) =0, we get

8y dy dy ) ox ., Ox ox
i =i |2 (G age) ~ 0 G+ il S —

485
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The first term belongs to i@, the second to N. So it is sufficient to prove that the
vectors

ox ox
el |~ 5w+ 5

Ox
are independent, where the term in brackets is a projection of % to the plane
A
perpendicular to x and y. From the definition of f, we have

af of
r— (6_t1""’6tn 171)

0

s ()
ox [ f 92 f 0
ot;  \otot;” " Otp_10t;7 )

Projecting this vector to the plane perpendicular to x and y, we get

o%f o2f 0.0
ot10t;” " Otp_o0t;’ '

LY
Further, we have ;;J = 0;j. We will prove the linear independence of the vectors
%

by proving that the (n — 1) X n matrix

9 f
10 0 0 e gm0 0
0 1 0 O vl o
............... _||C|| e e s s s s s s s s s s s s s s s s s s s e s e s s e e e
52 f H2Ff
0 0 1 0 oL O a0 0 0

has rank n — 1. As the (n — 1)-st column is independent, we will omit the two last
columns and the last row and show that the symmetric (n — 2) x (n — 2) matrix B
defined in this way is positively definite and so regular.

Let w = (¢1,t2, ..., tn—2) be a unit vector. We have

a2f

Bw,w) =1 e 55 >0,

because ||c|| is less than the radius of the sphere which touches OM in the point p,
so |le|l < 5
ow? 5

2. Now let h € OM Dbe arbitrary. We shall show that in every neighbourhood
of h, there is a point h’ which satisfies the conditions (i) and (ii) from the first part
of the proof. Let € > 0. Take hg € M NU(h,¢) and let S = CN(hg) N E™. So we
have

dist(S,0M) =6 > 0.
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Take € OM such that
dist(z, S) = 0.

Then the sphere S shifted by the vector 6(Rehg — ) meets M just in the point x.
By Lemma, there is a point h’ for which CN (k') N E™ is just this shifted sphere.
Such A’ satisfies the conditions (i), (ii) and

Ih =l < [ = holl + ho = K| < € +6 <2e.

O

Theorem 7. Let M CE", p € OM and OM be smooth inp. Let p=p+z € oM ,
where z = c(n + iu) be a vector such that T;0M exists. Then the vector
y_ 1 ,
Z=-—z=n—1u
c

is a normal vector to M at the point p.

d 00 09
PrROOF: It suffices to realize that all vectors 8—, 8—, 8— in the proof of Theorem 6
ot;” Oe;’ Jv;

are perpendicular to n — iu. 0

3. Generalized envelopes of holomorphy.

As we have already seen, every solution to the equation dgrf = 0 on a domain
M C E™ has a natural holomorphic extension to the envelope of holomorphy M.
Now we adopt a more general point of view. We are interested in properties of solu-
tions to the complex equation d¢ f = 0 and in this context, contours of integration
which lie entirely in E™ in integral formulas from Theorem 2 and 3, have no special
importance. If a solution to the equation dgf = 0 on a domain 2 C C" and a cycle
v C Q are given in such a way that the integral formula holds, we can use it to
extend the solution to a larger domain.

The integral formulas are of the form

f0)indy ) = - [ walf.p),
v

n

where wg is a closed differential form and the integral is not defined for p in
CN(y)= U CN(x).
ey
Let us consider the following case, where the conditions on §2 and =y are chosen in
such a way that the integral formulas are valid. Let & C C™ be a domain and v be
a cycle on its boundary such that CN (v )NQ = (. Moreover let v be homologically
trivial in QU+ and indy (p) # 0 for some (and so for any) p € Q.
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Definition 4. Let us denote by Q the corresponding component of the set C™ \
CN(v ) determined by . For a continuous function f defined on Q U~y and

satisfying in ) the equation d¢f = 0, we define a function f by
= 1 1

f(p)—mk—/ wa(fsp)-
n Jy

The function f is holomorphic. We need some further assumption to prove that

it is the extension of f.

Theorem 8. Suppose that there is a point p € Q) such that f0r~some e < dist(p, 09),
we have y ~ kSf_,(p) in Q\ CN(p) for some k € Z. Then f | Q = f.

PRrROOF: Let B C Q be open ball with center p and radius € . Then B is null-convex,
so by Theorems 3 and 4

11
kkn Jks,

f(p) wa(f,p)-

It follows from the definition of index that k = indy (p), so by the assumption
k # 0. The differential form wy(f,p) is closed, so the value of the integral over
homologically equivalent cycles is the same and f(p) = f(p).

Let us take y € B such that ||[p—y|| < % Then v ~ kS,2_;(y) and by the same
argument f(y) = f(y). Since f and f are holomorphic, we have f = f on . O

Let us consider a real n-dimensional smooth manifold with boundary M C C"™
and consider points p € int M such that the following condition is satisfied:

(A) CN(p)n M = {p}.
The following theorem was proved by J.Ryan in [4].

Theorem 9. If M C C" is a real, n-dimensional smooth manifold with boundary
which satisfies the condition (A) at every point p € M and if for every p € M

(B) CN(p) N (TpM)p = {p},
then each solution defined on a neighbourhood of M can be extended to M.

As an easy consequence of Theorem 8, we get the following substantial general-
ization of Theorem 9.

Theorem 10. Let f be a solution to the equation dgf = 0 which is defined on
a neighbourhood U of the manifold M and suppose that there is a point p € int M
with the property (A). Then there is a function f defined on M such that d¢f =0
and f = f on M, where M is the component of C"\ CN (M) determined by M.

PROOF: The smoothness of M implies that QU (p, e ) is transversal to M for suf-
ficiently small € . So OU(p,e ) N M is an (n — 1)-dimensional cycle which, by the
property (A), is homological to OM in U \ CN(p). We have

Hp1(U(p,e )\CN(p),Z) ~ Hp1(C" \ CN(p),Z) ~ Z.
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We can take Sf,_;(p) as a generator of this group, so for some k we have OM ~
kSt _1(p) in U\ CN(p). The rest is a consequence of Theorem 8. O

The next theorem says that for null-convex domains we can always apply Theo-
rem 8.

Theorem 11. If Q is a null-convex domain with respect to a point p € ), then
v ~ kS, _1(p) in Q\ CN(p).

n—1

PRrROOF: Put A = C"™\ CN(p) and consider the standard Mayer-Vietoris sequence
Hn(A U Q, Z) — n—l(A neQ, Z) — n—l(Aa Z) D Hn_l(Q, Z) — n—l(A U Q, Z)

which is exact and H,(AUQ,Z) =0 for k =n,n — 1, because A U} is star-convex
with respect to p. Thus we have an isomorphism

Hn—l(A N Q) i) n—l(Aa Z) S5 Hn—l(Qa Z)'

But v ~ 0in QU~ by the assumption and v ~ kS{,_;(p) in A for some k by
Theorem 1. So v ~ kSS_(p) in ANQ =Q\ CN(p). O

Theorem 10, though it has weaker assumptions than Theorem 9, is still not very
natural. It contains an assumption on the interior of M which does not appear in
the integral formulas at all. Our aim is to find natural conditions on €2 and v which
will guarantee that the function f is an extension of f to Q.

In the following theorem, we still suppose that v is the boundary of a smooth
manifold M, but all other assumptions involve only v and 2.

Theorem 12. Let v = OM and let pg € v be such that CN(pg) Ny = {po} and
TpoM N CN(pg) = {po}. Then there is a point p € int M such that v ~ kSf_ (D)
in Q\ CN(p).

PROOF: We shall show that there is a point p € int M such that CN(p)N M = {p}.

Then we will have
OM ~ kS5_1(5) in @\ CN(p)

by Theorem 10.
Let us first prove the following statement.
(S) There are ¢ and § > 0 such that for every y € U(pg,d ) N M

CN(y)NU(y,e )N M = {y}.

Let us suppose, to get a contradiction, that for each n € N there are ay, by, € M
such that

1 1
lpo — anll < — lbn, — anll < - and (an —by) € CN.

Let t € C'N be an accumulating point of the sequence of unit vectors (an—bp)/||an—
by||. Let 11, ...,%p be smooth functions defined on a neighbourhood U of py such

489
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that M NU is a subset of the set N = {2z € U : ¢;(2) =0, i =1,...,n} and the
rank of the matrix -
(2 2y
axj ayj i=1,...,n

is maximal in the point pg. In other words,

ve TpoM iff % lpp=10fori=1,...,n.
ov
: : . , ;i
Since t ¢ Tp, M, there is an index ¢ such that 5t lpo7 0. It follows from the

smoothness of v; that there is v > 0 such that for y € U(pg,v) and t' € U(t,v)

7

there is o l|y# 0. So there is n € N such that for w = (an — bn)/||an — byl we
have o
%
- 0
ow |y7é

in every point y of the segment a,by,.
On the other hand, by Rolle theorem, there is £ € apb, such that

o
6’[1} |5_ 05

which is a contradiction. Thus we have proved the statement (S).
Put €1 = dist(CN(po),(M \ U(po, 5)). If €2 < min(d ,e 1), then for y €
U(po, € 2) Nint M, we have

ON@)N(M\U(y,5)) =0
by the choice of € 9 and
ON()NMNU(y,5) = {4}

by (S). Thus we have found y € int M for which CN(y) " M = {y}. O
Now we formulate the main theorem.

Definition 5. We say that a boundary of a domain  C C" is Lipschitz in
a point xg € 9N if there are real numbers u > 0, § > 0, cartesian coordinates
(21, ..., x2p) = (2, 29,) and a Lipschitz function a(z’), defined on A = {2/ : |z;] <
wlori=1,...,2n — 1} such that

(1) zo = (0,a(0)),

(2) if v = (2, a(2")) for some 2/, then z € 99,

(3) U;‘ = {(2',297) : a(2)) < wop < a(a’) +5} CQ,

(3" Uy ={(a,w2n) 1 a(a’) =6 < won <a(a’)} CC"\Q.
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Theorem 13. Let 2 be a domain in C", v C 9 be a smooth closed manifold
(without boundary) of real dimension n—1 which is homologically trivial in QU~y and
QNCN(y)=0. Let xg € v be such that 9Q is Lipschitz in xg and the following
two conditions are satisfied:

(i) Tzoy NCN (o) = {zo},
(i) v NCN(zo) = {xo}-
Then for each continuous function f : QU~y — Cg which is holomorphic and

satisfies the equation d¢ f = 0 in (2, there is a holomorphic function f defined on
such that f |o= f and dof =0 on Q.

PRrROOF: We will proceed in this way: first, we shall prove that the surface consisting
of straight lines passing through v in the direction g, lies outside CN(zg) in
a neighbourhood of zg. Then we shall remove a small neighbourhood of zg from
the set QU~ and in the remaining part we shall find a homologically trivial cycle X,
which differs from v only by the boundary of a manifold which does not contain
null segments (part of the constructed line surface). Then we shall show that there
is a point v of this manifold such that v ~ kSf_;(v) and we shall apply Theorem 8.

Let (x1,...,22,) be cartesian coordinates from Definition 5. Let us denote by
Zon the unit vector in the direction of the last coordinate. Since a is Lipschitz, we
have &9p ¢ Tryy - Let us consider a cylinder:

Ve ={(a,22n) : 2"l < € }.
We shall prove the following statement
(S) There is € 1 > 0 such that 0V, | intersects v transversally.

Let us define the angle between two sets A and B with AN B = {p}:

Z(A, B) = arccos | sup (a=pb=p) .
aeA\{p} |l = pll[[b—p]
beB\{p}

It follows from the condition (i) that there is € o > 0 such that for U(zg, e 2) N~y
and the axis < x9, > of V. we have

(1) L(U(zg,e2) N7y, <xop >)=a>0.

Further it follows from the smoothness of v that there is € 1 < € 2 such that for
each y € U(zg,€ 1) Ny there is t € Tyy such that

(2) L(<t><y—xzp>) < a.
Let v € Ve ; Ny . From (1) we get

L(<v—xg >, < T2, >) >
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and also
3) L(<v—mo > TyoVe ) > .
Let us apply (2) to v. There is t € Ty such that
(4) (<t><v—x0>) <«
It follows from (3) and (4) that

(<t >,TpdVe ) >0,

sot ¢ TydVe ,, in other words T,0V; , ® T,y = R2", concluding the proof of (S).
By the assumptions, < x9, > and T,y lie outside CN(zp). We shall prove that
moreover

(5) (Toy ® < won, >)NCN(z9) = {x0}-
It follows from the lipschitz condition that there is £, 0 < £ < d such that the set

E=J{yeC |ao—yll<& & (y—u,2n) >0 & L(<y—x > <z >) <&}
S

lies in Q. Take t € Ty,v ,||t]| = 1 and A € R and prove that the vector v = t+ Axay,
does not belong to CN. It suffices to find g > 0 such that p = z¢g + pv € Q
, for QN CN(zg) = 0. Choose u < min(%7 2—{4) with the property that there is
y € v NU(xg, ) such that

[[(zo + pt) =yl < u€A.
Put p’ =y + pAig,. We have p’ € U;‘ C Q. Further
lp =9Il < ugA,

so Z(<p—y><p —y>)<&and pv € E C O, which proves (5).

It follows from (5) that there is € 3 such that for every y € U(zg, € 3) N7 , the line
passing through the point y in direction z9, does not intersect CN(xg). Finally,
put € =min(e 1,€ 3). Let us denote

Az(Ug'Uw)ﬂintVE,

B=(QUy )\ (UZ NVey,
3

6:")/ ﬂ&V%

By (S), (s a closed (n—2) dimensional manifold with the orientation induced from
¥ N V%. We define a chain

5
v1=Uly= e s v =2 & @) < gon < ale) + S},
€S
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sov 1 ~pBx]0, %] We define the orientation on 7 1 in such a way that the induced
orientation on 3x[0] is the same as on 3. Further we define a new (n—1)-dimensional
chain ¥ C B:

T=(y \intVe) +v 1+ (v NV,

where (y N V%)l is (v N V%) shifted by the vector %:bgn. Now, X is a cycle,
because the boundaries of v ; and the other two chains cancel. We will show that
Y is trivial in B. Applying Maier-Vietoris sequence, since A N B is trivial, there is
an isomorphism

Hy(A)® Hy,(B) — Hy(AUB)

sending the class [X — vy ]+ [X] to [y]. But (X —+v) ~ 0 in A, because A is
homologically trivial, and v ~ 0in AUB = QU~ . So also ¥ ~ 0 in B. Let
us denote by K7 the complex in B for which 0K; = ¥. The cycle ¥ — « is the
boundary of

1)
K2:(V% Ny ) x [075]-

So for K = K1 + K9, we have 0K = . From the assumption CN(zg) N Q = ,
and we get

(6) dist(K1,CN(z9)) >v >0
for some v < ¢ . Let us denote ¢ = zg + vio,. We have

CN(g)N Ky =0
by (1) and
CN(q) N K2 = {q}

by (5), because K consists of segments in the direction x, which do not intersect
CN(zp), hence not CN(q). The same argument as in the proof of Theorem 12
shows that

v ~kS,_1(g) in Q\CN(q).

By Theorem 8, we can extend all solutions from Q U~ to €. O
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