Article
Keywords:
Nehari-type oscillation criteria; conjugate points; self-adjoint equation; principal solution
Summary:
Oscillation criteria of Nehari-type for the equation $(-1)^n(x^{\alpha}y^{(n)})^{(n)} + q(x)y = 0$, $\alpha\in {\bold R}$, are established. These criteria impose no sign restriction on the function $q(x)$ and generalize some recent results of the second author.
References:
[1] Coppel W.A.:
Disconjugacy. Lectures Notes in Math. No. 220, Springer Verlag, Berlin-Heidelberg, 1971.
MR 0460785 |
Zbl 0224.34003
[2] Došlý O.:
The existence of conjugate points for self-adjoint linear differential equations. Proc. Roy. Soc. Edinburgh 112A, (1989), 73-85.
MR 1025455
[3] Došlý O.: Oscillation criteria for self-adjoint linear differential equations. submitted to Diff. Integral Equations.
[4] Fiedler F.:
Hinreichende Oszillationkriterien für gewöhnliche Differentialoperatoren höher Ordnung. Math. Nachr. 96 (1980), 35-48.
MR 0600799
[5] Fiedler F.:
Oszillationkriterien vom Nehari-Typ für gewöhnliche Differentialoperatoren vierter and sechster Ordnung. Beiträge Anal. 18 (1981), 113-132.
MR 0650144
[6] Fiedler F.:
Oscillation criteria for a class of $2n$-order ordinary differential operators. J. Diff. Equations 42 (1981), 155-185.
MR 0641646 |
Zbl 0452.34031
[7] Fiedler F.:
Oscillation criteria for a special class of $2n$-order ordinary differential equations. Math. Nachr. 131 (1987), 205-218.
MR 0908812 |
Zbl 0644.34024
[8] Glazman I.M.:
Direct Methods of Qualitative Spectral Analysis of Singular Differential operators. Davey, Jerusalem, 1965.
MR 0190800 |
Zbl 0143.36505
[9] Lewis R.T.:
Oscillation and nonoscillation criteria for some self-adjoint even order linear differential operators. Pacific J. Math. 51 (1974), 221-234.
MR 0350112 |
Zbl 0281.34027
[10] Müller-Pfeiffer E.:
Oscillation criteria of Nehari-type for Schrödinger equation. Math. Nachr. 96 (1980), 185-194.
MR 0600809
[11] Nehari Z.:
Oscillation criteria for second order linear differential equations. Trans. Amer. Math. Soc. 85 (1957), 428-445.
MR 0087816 |
Zbl 0078.07602