
Commentationes Mathematicae Universitatis Carolinae

Ondřej Došlý; Frank Fiedler
A remark on Nehari-type oscillation criteria for self-adjoint linear differential
equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 3, 447--462

Persistent URL: http://dml.cz/dmlcz/118426

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118426
http://project.dml.cz


Comment.Math.Univ.Carolin. 32,3 (1991)447–462 447

A remark on Nehari-type oscillation criteria

for self-adjoint linear differential equations

Ondřej Došlý, Frank Fiedler

Abstract. Oscillation criteria of Nehari-type for the equation (−1)n(xαy(n))(n)+q(x)y = 0,
α ∈ R, are established. These criteria impose no sign restriction on the function q(x) and
generalize some recent results of the second author.

Keywords: Nehari-type oscillation criteria, conjugate points, self-adjoint equation, princi-
pal solution

Classification: 34C10

1. Introduction.

Consider a self-adjoint linear differential equation of the even order

(1.1) (−1)n(xαy(n))(n) + q(x)y = 0,

where α is a real constant and q ∈ C[a,∞), a > 0. Equation (1.1) is said to
be oscillatory at ∞ if for every b > a there exist x1, x2 ∈ (b,∞), x1 < x2, and

a nontrivial solution y of (1.1) such that y(i)(x1) = 0 = y(i)(x2), i = 0, . . . , n − 1.
The points x1, x2 are said to be (mutually) conjugate relative to (1.1).
Nehari [11] investigated the special case α = 0, n = 1, q(x) ≤ 0 and proved that

(1.1) is oscillatory at ∞ provided

lim
x→∞

x1−σ
∫ ∞

x
q(t)tσdt < −1−

σ2

4(1− σ)
.

This result was generalized and extended by several authors [4], [5], [8],[9], [10] and
in [6], [7] the following results were proved.

Theorem A. Let α /∈ {1, 2, . . . , 2n− 1} and

(1.2) q(x) ≤ 0 for large x.

If α+ σ < 2n − 1, suppose

(1.31) lim inf
x→∞

x2n−1−α−σ
∫ ∞

x
q(t)tσ dt < −Bn,α,σ −

(σ/2
n

)2
(n!)2

2n − 1− α − σ
,
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if α+ σ > 2n − 1, suppose

(1.32) lim inf
x→∞

x2n−1−α−σ
∫ x

1
q(t)tσ dt < −B̄u,α,σ −

(σ/2
n

)2
(n!)2

2n− 1− α − σ
,

Bn,α,σ, B̄n,α,σ being nonnegative real constants depending on n, α, σ. Then (1.1)
is oscillatory at ∞. Moreover, the assumption (1.2) can be omitted for σ = 0 if we
replace in (1.31,2) lim inf by lim sup.

The precise values of the constants Bn,α,σ, B̄n,α,σ were computed in [6] and will
be given later.

Theorem B. Let (1.2) hold and α = 2n − 1− 2k, k = 0, 1, . . . , n − 1. If

(1.4) lim inf
x→∞

ln x

∫ ∞

x
q(t)t2kdt < −(k!(n − 1− k)!)2,

then (1.1) is oscillatory at ∞. Moreover, for k = 0, the assumption (1.2) can be
omitted if we replace in (1.4) lim inf by lim sup.

The aim of this paper is to find further values of the constants σ and k for which
(1.2) is not necessary if we replace in (1.31,2), (1.4) lim inf by lim sup. In this case
we formulate Theorem B in a more general form. We also give the outline of an
alternative method of computation of the constants Bn,α,σ, B̄n,α,σ, which may be
a little simpler than that given in [6], [7].
The main idea of the proofs of our statemennts is the same as in [6], [7] and it is

based on the following theorem.

Theorem C. Equation (1.1) is oscillatory at∞ if and only if for every b > a there

exist x1, x2 ∈ (b,∞), x1 < x2, and a nontrivial function v ∈
◦

Wn
2 (x1, x2) such that

I(v;x1, x2) =

∫ x2

x1

[xα(v(n)(x))2 + q(x)v2(x)]dx ≤ 0.

Recall that the Sobolev space
◦

Wn
2 (x1, x2) consists of the functions v(x) whose

(n− 1)-th derivative is absolutely continuous, v(n) ∈ L2(x1, x2) and v(i)(x1) = 0 =

v(i)(x2), i = 0, . . . , n − 1.

2. Auxiliary statements.

Seft-adjoint linear differential equations of the even order are closely related to the

linear Hamiltonian systems (LHS). If y is a solution of (1.1), then u = (y, ..., y(n−1)),

v = ((−1)n−1(xαy(n))(n−1), . . . , xαy(n)) is a solution of the system

(2.1) u′ = Au+B(x)v, v′ = C(x)u − AT v,

where

(2.2)
B(x) = diag {0, . . . , 0, x−α},

C(x) = diag {q(x), 0, . . . , 0},
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A = Ai,j =

{

1, for j = i+ 1, i = 1, . . . , n − 1,

0, elsewhere.

We say that the solution (u, v) of (2.1) is generated by the solution y of (1.1).
Two points x1, x2 ∈ [a,∞) are said to be conjugate relative to (2.1) if there exists
a nontrivial solution (u, v) of (2.1) such that u(x1) = 0 = u(x2). System (2.1) is
said to be disconjugate on an interval I whenever there exists no pair of points of I
which are conjugate relative to (2.1) and this system is said to be nonoscillatory
at∞ if there exists b ∈ (a,∞) such that (2.1) is disconjugate on (b,∞). It is obvious
that x1, x2 ∈ (a,∞) are conjugate relative to (1.1) if and only if they are conjugate
relative to (2.1) with A, B, C given by (2.2).
Simultaneously with (2.1) consider the matrix system

(2.3) U ′ = AU +B(x)V, V ′ = C(x)U − AT V,

where U, V are n×n matrices. A solution (U, V ) of (2.3) is said to be self-conjugate

if UT (x)V (x) − V T (x)U(x) ≡ 0. A self-conjugate solution (U0, V0) of (2.3) is said
to be principal at ∞ if U0(x) is nonsingular for large x and

lim
x→∞

(

∫ x

x0

U−1
0 (s)B(s)U

T−1
0 (s)ds)−1 = 0.

Let (U1, V1) be a solution of (2.3) which is linearly independent of (U0, V0) (i.e.
(U0, V0), (U1, V1) form the base of the solution space of (2.3)), then

lim
x→∞

U−1
1 (x)U0(x) = 0.

The principal solution of (2.3) at∞ is determined uniquely up to a right multiple by
a constant nonsingular n× n matrix and exists if and only if (2.1) is nonoscillatory
at ∞. A solution (U1, V1) is said to be nonprincipal at ∞ if

lim
x→∞

(

∫ x

x0

U−1
1 (s)B(s)U

T−1
1 (s)ds)−1 =M,

whereM is a nonsingular n×n matrix. For a more detailed information concerning
LHS (2.1) and their principal solutions see, e.g., [1].

Lemma 1 [1, Chap. II]. Let (U, V ) be a self-conjugate solution of (2.1) such that
the matrix U(x) is nonsingular on I ⊆ [a,∞), x0 ∈ I. Then

(Ũ(x), Ṽ (x)) = (U(x)

∫ x

x0

U−1(s)B(s)UT−1(s)ds,

V (x)

∫ x

x0

U−1(s)B(s)UT−1(s)ds+ UT−1(x))

is also a self-conjugate solution of (2.3).
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Lemma 2 [1, Chap. I]. Let (2.1) be disconjugate on an interval I ⊆ [a,∞) and let
x1, x2 ∈ I, x1 6= x2, u1, u2 ∈ Rn be arbitrary. There exists a unique solution (u, v)
of (2.1) for which u(x1) = u1, u(x2) = u2.

Now consider the linear differential equation

(2.4) y(n) + qn−1(x)y
(n−1) + · · ·+ q0(x)y = 0,

where qi ∈ C[a,∞), i = 0, . . . , n − 1. Concerning this equation, we shall need
another definition of disconjugacy for linear differential equations, introduced by
Nehari. Equation (2.4) is said to be disconjugate in the sense of Nehari, shortly
N-disconjugate, on an interval I ⊆ [a,∞) whenever every nontrivial solution of
this equation has at most (n − 1) zeros on I, every zero counted according to its
multiplicity, (2.4) is said to be eventually N-disconjugate if there exists b ∈ [a,∞)
such that this equation is N-disconjugate on (b,∞).
Recall briefly oscillation properties of solutions of (2.4). A system of solutions

y1, . . . , yn of (2.4) is said to form a Markov system of solutions on I ⊆ [a,∞) if n
Wronskians

W (y1, . . . , yk) =

∣

∣

∣

∣

∣

∣

∣

y1 . . . yk
...

...

y
(k−1)
1 . . . y

(k−1)
k

∣

∣

∣

∣

∣

∣

∣

,

k = 1, . . . , n, are positive throughout I. The system y1, . . . , yn is said to form
a Descartes system of solutions on I if all Wronskians W (yi1 , . . . , yik), 1 ≤ i1 <
· · · < ik ≤ n, k = 1, . . . , n, are positive throughout I.

Lemma 3 [1, Chap. III]. Equation (2.4) is eventually N-disconjugate if and only
if there exists b ∈ [a,∞) such that (2.4) possesses a Markov system of solutions on
(b,∞) satisfying the additional condition

(2.5)
yi > 0 for large x, i = 1, . . . , n

yk−1 = o(yk) for x → ∞, k = 2, . . . , u.

Moreover, a Markov system of solutions of (2.4) satisfying (2.5) form the Descartes
system of solutions for large x.

Lemma 4 [1, Chap. III]. Let y1, . . . , yn be a Descartes system of solutions of (2.4)
for large x satisfying (2.5). If 1 ≤ i1 < i2 < · · · < ik ≤ n, 1 ≤ j1 < j2 < · · · < jk ≤
n, 1 ≤ k ≤ n, are distinct k-tuples such that il ≤ jl, l = 1, . . . , k, then

lim
x→∞

W (yi1 , . . . yik)/W (yj1 , . . . yjk
) = 0.

Lemma 5. Let u1, . . . , un, v1, . . . , vn be real-valued functions of the class Cn−1

and let

U(x) = (u
(i−1)
j (x))ni,j=1, V (x) = (v

(i−1)
j (x))ni,j=1
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be their Wronski matrices. If U(x) is nonsingular, then

[U−1(x)V (x)]i,j =
W (u1, . . . , ui−1, vj , ui+1, . . . , un)

W (u1, . . . , un)
.

Proof: Taking into account the rule for computation of the entries of the inverse
matrix and the rule for the product of two matrices, the conclusion can be verified
by a direct computation. �

Lemma 6 [1, Chap. III]. Let y1, . . . yn ∈ Cn−1 be real-valued functions, yj 6= 0.
Then

W (y1, . . . , yn) =

(−1)j+1W ((y1/yj)
′, . . . , (yj−1/yj)

′, (yj+1/yj)
′, . . . , (yn/yj)

′).

3. Main results.

Theorem 1. Let α /∈ {1, 2, . . . , 2n − 1}, σ/2 ∈ {0, 1, . . . , n − 1} ∪ {n − α, n − a +
1, . . . , 2n − 1− α}. If α+ σ < 2n − 1, suppose

(3.11) lim sup
x→∞

x2n−1−α−σ
∫ ∞

x
q(t)tσ dt < −Bn,α,σ −

(σ/2
n

)2
(n!)2

2n − 1− α − σ
,

if α+ σ > 2n − 1, suppose

(3.12) lim sup
x→∞

x2n−1−α−σ
∫ x

1
q(t)tσ dt < −B̄n,α,σ −

(σ/2
n

)2
(n!)2

2n − 1− α − σ
.

Then (1.1) is oscillatory at ∞.

Proof: Let h(x) = xσ/2, f(x) = (−1)n
(2n−1)!
[(n−1)!]2

∫ x
0 tn−1(t − 1)n−1 dt, 0 ≤ x ≤ 1.

Case I. α+ σ < 2n − 1.
Define

(3.2) y(x) =































0, for a ≤ x ≤ Q

g(x), for Q ≤ x ≤ R

Rτ/2h(x), for R ≤ x ≤ S

Rτ/2h(x)f( T−x
T−S ), for S ≤ x ≤ T

0, for T ≤ x,

where τ = 2n− 1− α − σ and g(x) is the solution of the equation

(3.3) (xαy(n))(n) = 0
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satisfying the boundary conditions

(3.4) g(i)(Q) = 0, g(i)(R) = Rτ/2h(i)(R), i = 0, . . . , n − 1.

Note that such a solution always exists since the linear Hamiltonian system corre-
sponding to (3.3) is disconjugate on [a,∞). Using the results of [6], we get

lim
R→∞

∫ R

Q
xα(y(n)(x))2dx = Bn,α,σ,

where

(3.5)

Bn,α,σ = 0 for α > 2n − 1

=
(n!)2

(σ/2
n−k

)2

(n
k

)

∫ 1

0
x−α

[

n−1
∑

i=n−k

(−x)i
(

n+ i − α

k

)

·

·

(

σ/2 + α+ k − 2n

i+ k + n

)(

σ/2 + α − n − i − 1

n − i − 1

)

]2
dx,

for 2n − 1− 2k < α < 2n+ 1− 2k, k = 1, . . . , n − 1

and α < 1, k = n,

lim
S→∞

∫ S

R
xα(y(n))2dx =

(σ/2
n

)

(n!)2

2n − 1− α − σ
=: ̺

lim
S→∞

∫ 2S

S
xα(y(n))2dx = 0.

To show that (1.2) can be omitted if we replace (1.31) by (3.11), we proceed as
follows. Since α /∈ {1, 2, . . . , 2n− 1}, the function g(x) is of the form

g(x) =

n−1
∑

i=0

(aix
i + bix

n−α+i),

where ai, bi are real constants, and hence

g(x)x−σ/2 =

n−1
∑

i=0

aix
i−σ/2 + bix

n−α+i−σ/2.

Since σ is such that xσ/2 is a solution of (3.3), one of the exponents of x on the

right-hand side of the last expression equals 0. It follows that [g(x)x−σ/2]′ is a linear
combination of (2n−1) functions, each of them is a power of x. Order these functions
according to their exponents and denote them y1, . . . , y2n−1 (y2n−1 corresponds to
the greatest power). It is not difficult to verify that these functions form the Markov
system of solutions of a certain (2n−1)-order linear differential equation which is, by
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Lemma 1, N-disconjugate on [a,∞). Since [g(x)x−σ/2]′ is a solution of this equation

and [g(x)x−σ/2]
(j)
x=Q = 0 = [g(x)x

−σ/2]
(i)
x=R, i = 1, . . . , n− 1, [g(x)x−σ/2]′ does not

vanish on (R, Q), i.e. g(x)x−σ/2 is monotonic on this interval. The function f ′(x)

is a polynomial of order (2n − 2) for which f (i)(0) = 0 = f (i)(1), i = 1, . . . , n − 1,
hence the existence of x0 ∈ (0, 1) such that f ′(x0) = 0 would imply f ′(x) ≡ 0 on
(0, 1) – a contradiction.
Now, using the second mean value theorem of integral calculus, we have
∫ T

Q
qy2dx =

∫ R

Q
qg2 dx+Rτ

∫ S

R
qxσ dx+Rτ

∫ T

S
qxσf2(

T − x

s − x
) dx =

=

∫ R

Q
qxσ(gx−σ/2)2 dx +Rτ

∫ S

R
qxσ dx+Rτ

∫ T

S
qxσf2(

T − x

T − s
) dx =

= Rτ
∫ ξ2

ξ1

qxσ dx,

where ξ1 ∈ (Q, R), ξ2 ∈ (S, T ). According to (3.11), the integral
∫ ξ2
ξ1

qxσdx is

negative if ξ1, ξ2 are sufficiently large (i.e. Q and S are sufficiently large), hence

Rτ
∫ ξ2
ξ1

qxσ dx ≤ ξτ
1

∫ ξ2
ξ1

qxσ dx. To finish the proof, we proceed in the same way as

in [6]. Let δ > 0 be sufficiently small. By (3.1), there exists Q ∈ [a,∞) such that

(3.6) ξτ
1

∫ ∞

ξ1

qxσ dx < −Bn,α,σ − ̺ − 4δ

whenever ξ1 > Q. By (3.5), (3.6), R, S can be chosen such that

IR,S =

∫ S

R
xα(y(n))2 dx < ̺+ δ

IS,2S =

∫ 2S

S
xα(y(n))2 dx < δ

IQ,R =

∫ R

Q
xα(y(n))2 dx < Bn,α,σ + δ

and

ξτ
1

∫ ξ2

ξ1

qxσ dx < −Bn,α,σ − ̺ − 3δ

whenever ξ2 > S. Consequently, I(y;Q, T ) = IQ,R + IR,S + IS,T +
∫ T
Q qy2 dx <

Bn,α,σ + δ + ̺+ δ + δ − Bn,α,σ − ̺ − 3δ = 0 if T = 2S.

II. Case α+ σ > 2n − 1.
Define

y(x) =































0, for a ≤ x ≤ Q,

Sτ/2xσ/2f( x−Q
R−Q ), for Q ≤ x ≤ R,

Sτ/2xσ/2, for R ≤ x ≤ S,

g(x), for S ≤ x ≤ T ,

0, for x ≥ T ,
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where g(x) is the solution of (3.3) satisfying the boundary conditions g(i)(S) =

Sτ/2(xσ/2)
(i)
x=S , g

(i)(T ) = 0, i = 0, . . . , n− 1, τ and f(x) are the same as above. To

prove that the function g(x)x−σ/2 is monotonic on (S, T ), we can proceed in the
same way as in the first part of the proof and the exact value of B̄n,α,σ,

B̄n,α,σ = 0 for α < 1

=
n!
(σ/2

k

)2

(n
k

)

∫ ∞

1
x−α

[

n−k−1
∑

i=0

(−x)i
(

n+ i − k − α

n − k

)

(

σ/2− n+ α

i

)(

σ/2− n − i − 1 + α

n − k − i − 1

)

]2
dx

for 2n − 1− 2k < α < 2n+ 1− 2k, k = 1, . . . , n − 1

and 2n − 1− 2k < α, k = 0

was calculated in [6]. The proof is complete. �

Remark 1. Recall that the numbers
(β
n

)

, β-real number, n-natural number, are

defined as follows:
(β
n

)

= (1/n!)β(β − 1) . . . (β − n + 1). Consequently, if σ/2 ∈
{0, . . . , n − 1}, the second constant on the right-hand side of (3.11,2) equals zero.

In the proof we have just finished, we did not pay attention to the exact compu-
tation of the constants Bn,α,σ, B̄n,α,σ since this had been done in [6]. Now make
some remarks concerning the calculation of these constants. Our observations are
based on a relation between equation (1.1) and LHS (2.1).

Let g(x) be the solution of (3.3) satisfying (3.4), denote by (u, v) the solution of
the corresponding LHS

(3.7) u′ = Au+B(x)v, v′ = −AT v

generated by g and let H(x) be the solution of

(3.8) H ′ = AH, H(0) = I (the identity matrix).

Then (H, 0) is the solution of the matrix system associated with (3.7) and using
Lemma 1 one can directly verify that

u(x) = H(x)

∫ x

Q
H−1BHT−1 ds(

∫ R

Q
H−1BHT−1 dx)−1H−1(R)C(R)

v(x) = HT−1(x)(

∫ R

Q
H−1BHT−1 dx)−1H−1(R)C(R),

where C(R) = Rτ/2 (Rσ/2, σ/2Rσ/2−1, ...,
(σ/2

k

)

k!Rσ/2−k+1, ..,
(σ/2

n

)

n!Rσ/2−n+1).



A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations 455

It holds

∫ R

Q
xα(g(n))2 dx =

∫ R

Q
vT (x)B(x)v(x) dx =

= CT (R)HT−1(R)(

∫ R

Q
H−1BHT−1 dx)−1

∫ R

Q
H−1BHT−1 dx

(

∫ R

Q
H−1BHT−1 dx)−1H−1(R)C(R) =

= CT (R)HT−1(R)(

∫ R

Q
H−1BHT−1 dx)−1H−1(R)C(R).

Since

H(x) =











1 x x2/2! . . . xn−1/(n − 1)!
0 1 x . . . xn−2/(n − 2)!
...
0 . . . . . . . . . . 0 1











hence

H−1(x) =











1 −x x2/2! . . . (−1)n−1xn−1/(n − 1)!
0 1 −x . . . (−1)n−2xn−2/(n − 2)!
...
0 . . . . . . . . . . . . 0 1











,

and concerning the vector d(R) = H−1(R)C(R), we have

di(R) = Rτ/2
n−i
∑

k=0

(−1)k
Rk

k!

(

σ/2

k + i

)

(k + i)!Rσ/2−k−i =

= R
2n−1−α

2
−i

n−i
∑

k=0

(−1)k
1

k!

(

σ/2

k + i

)

(k + i)!.

Now it suffices to compute the matrix (
∫R
Q H−1BHT−1dx)−1.

Consider the case α + σ < 2n − 1, the case α + σ > 2n − 1 can be treated
analogously. By a routine computation, we get

∫ x

Q
H−1BHT−1 dt =

[

(−1)i+jt2n+1−α−i−j

(n − i)!(n − j)!(2n − α − i − j + 1)
|xQ

]n

i,j=1
.

If α > 2n − 1, (H, 0) is a nonprincipal solution of (3.7), see [3]. Hence

lim
x→∞

(

∫ x

Q
H−1BHT−1 dt)−1 =M,
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M being a nonsingular n × n matrix, and limR→∞ di(R) = 0, i = 1, . . . , n. Conse-
quently,

Bn,α,σ = lim
R→∞

dT (R)(

∫ R

Q
H−1BHT−1dx)−1d(R) = 0.

Denote

yj =
x2n−α−j

(n − j)!

n
∑

i=1

(−1)i+j

(n − i)!(2n − α − i − j + 1)i!
, j = 1, . . . , n

D = di,j =

[

(−1)i+jQ2n+1−i−j−α

(n − i)!(n − j)!(2n − α − i − j + 1)

]n

i,j=1

and let (U1, V1) be the matrix solution of (3.7) generated by y1, . . . , yn. If α < 1,
then (H, 0) is the principal solution of this system and

lim
x→∞

(H−1(x)U1(x) +D)−1H−1(x)U1(x) =

= lim
x→∞

(I + U−1
1 (x)H(x)D)

−1 = I,

i.e.

lim
x→∞

(H−1(x)U1(x) +D)−1 =

= lim
x→∞

(

∫ x

Q
H−1BHT−1 ds)−1 = lim

x→∞
U−1
1 (x)H(x).

Denote Mj =
(−1)j

(n−j)!

∑n
i=1

(−1)i

(n−i)!i!(2n+1−α−i−j)
.

[U−1
1 H ]i,j =

W (M1x
2n−1−α, .., Mi−1x

2n−α−i+1, xj−1/(j − 1)!, Mi+1x
2n−α−i−1, .., Mnxn−α)

W (M1x2n−1−α, . . . , Mnxn−α)
=

1

Mi(j − 1)!

W (x2n−α−1, . . . , x2n−α−i+1, xj−1, x2n−i−α−1, . . . , xn−α)

W (x2n−1−α, . . . , xn−α)
=

xn(j−1)

Mi(j − 1)!

W (x2n−α−j , . . . , x2n−α−i−j+2, 1, x2n−α−i−j , . . . , xn−α−j+1)

1!2! . . . (n − 1)!(−1)n(n+3)/2xn(n−α)
.

Using Lemma 6 for computing the Wronskian in the nominator, we get

W (x2n−α−j , . . . , x2n−α−i−j+2, 1, x2n−α−i−j , . . . , xn−α−j+1) =

= (−1)j+1W ((2n − α − j)x2n−α−j−1, . . . , (2n − α − i − j + 2)x2n−α−i−j+1,
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(2n − α − i − j)x2n−α−i−j−1, . . . , (n − α − j + 1)xn−α−j) =

= x(n−1)(n−α−j)
(

2n − α − j

n

)

n! ·
W (xn−1, . . . , xn−i+1, xn−i−1, . . . , 1)

(2n − α − i − j + 1)
=

= x(n−1)(n−α−j)+i−1

(2n−α−j
n

)

n!

2n − α − i − j + 1
·
1!2! . . . (n − 1)!

(n − i)!
(−1)(n−1)(n+2)/2.

Combining these computations with the previous ones, we have

[U−1
1 H ]i,j = xα−2n+i+j−1 ·

(2n−α−j
n

)

(−1)n+1n!

(n − i)!(2n − α − i − j + 1)
·

1

(j − 1)!Mi

and

IQ,R =

n
∑

i,j=1

di(R)dj(R)[U
−1
1 (R)H(R)]i,j =

=

n
∑

i,j=1

(

n−i
∑

k=0

(−1)k

k!

(

σ/2

k + i

)

(k + i)!

)





n−j
∑

k=0

(−1)k

k!

(

σ/2

k + j

)

(k + j)!



 ·

·

(2n−α−j
n

)

(−1)n+1n!

(n − i)!(2n − α − i − j + 1)(j − 1)!Mi
.

If α ∈ (2n − 1− 2k, 2n+ 1− 2k)\{1, . . . , 2n − 1}, then

dT (R)(

∫ R

Q
H−1BHT−1 dx)−1d(R) =

= dT (R)(U1(R)− H(R)D)−1H(R)d(R).

Denote ỹj = yj −
∑n

i=1
xi−1

(i−1)!
dij , then

[(U1(R) +H(R)D)−1H(R)]i,j =
W (ỹ1, . . . , ỹi−1, x

j−1/(j − 1)!, ỹi+1, . . . , ỹn)

W (ỹ1, . . . , ỹn)
|x=R.

By means of Lemma 4, one can verify that if max{i, j} > k, then

[(U1 +HD)−1H ]i,j = o(Rα+i+j+1−2n) as R → ∞

and thus

dT (R)(

∫ R

Q
H−1BHT−1 dx)−1d(R) =

=

k
∑

i,j=1

di(R)dj(R)[(U1(R) +H(R)D)−1H(R)]i,j ,

whereby the entries of [(U1+HD)−1H ] can be computed in the same way as in the
case α < 1.
Now turn our attention to the case when α ∈ {1, 3, . . . , 2n − 1} which is treated

by Theorem B. This theorem can be modified in the following way.
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Theorem 2. Let α ∈ {1, 3, . . . , 2n − 1}, k ∈ {0, . . . , n − 1}, c0, . . . , ck−1 ∈ R. If

(3.9) lim sup
x→∞

lnx

∫ ∞

x
q(t)(c0 + · · ·+ ck−1t

k−1 + tk)2dt < −(k!(n − 1− k)!)2,

then (1.1) is oscillatory at ∞.

Proof: Let h(x) = c0 + · · ·+ ck−1x
k−1 + xk, h̃(x) = xk. Define

y(x) =



























0, for a ≤ x ≤ Q,

g(x), for Q ≤ x ≤ R,

h(x), for R ≤ x ≤ S,

f(x), for S ≤ x ≤ T ,

0, for x ≥ T ,

where g, f are the solutions of (3.3) satisfying (3.4) and

(3.10) f (i)(S) = h(i)(S), f (i)(T ) = 0, i = 0, . . . , n − 1,

respectively. Further, let g̃, f̃ be the solutions of (2.3) satisfying (3.4) and (3.10)

with h replaced by h̃. It was proved in [7] that

lim
R→∞

lnR

∫ R

Q
xα(f̃ (n))2dx = γ

and

lim
T→∞

∫ T

S
xα(f̃ (n))2dx = 0,

where γ = (k!(n−k−1)!)2. We shall show that also limR→∞ ln R
∫R
Q xα(g(n))2 dx =

γ, limT→∞

∫ T
S xα(f (n))2dx = 0. Let (ũ, ṽ) be the solution of (3.7) generated by g̃.

According to (3.4), Lemma 1 and Lemma 2, one can directly verify that

ũ(x) = H(x)

∫ x

Q
H−1BHT−1ds(

∫ R

Q
H−1BHT−1ds)ek+1

ṽ(x) = HT−1(x)(

∫ R

Q
H−1BHT−1dx)−1ek+1,

where ek+1 = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn with the number 1 on the (k+1)-th place.
∫ R
Q xα(g̃(n))2dx =

∫R
Q vT Bvdx = eT

k+1(
∫R
Q H−1BHT−1dx)ek+1. By Lemma 1,

(U1(x), V1(x)) = (H(x)
∫ x
Q H−1BHT−1ds, HT−1(x)) is a solution of the matrix

system corresponding to (3.7) and this solution is generated by the solutions yj(x) =
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(−1)j
∫ x
Q
(x−t)n−1

(n−1)!
tn−α−j

(n−j)!
dt, j = 1, . . . , n, see [2].

∫ x
Q H−1BHT−1ds =

H−1(x)U1(x), hence

(

∫ R

Q
H−1BHT−1 ds)−1 =

W (y1, . . . , yi−1, x
j−1/(j − 1)!, yi+1, . . . , yn)

W (y1, . . . , yn)
|x=R

and thus

lim
R→∞

lnR

∫ R

Q
xα(g(n))2 dx = lim

R→∞
lnReT

k+1(

∫ R

Q
H−1BHT−1 dx)−1ek+1 =

= lim
R→∞

lnR
W (y1, . . . , yk, xk/k!, yk+2, . . . , yn)

W (y1, . . . , yn)
|x=R= γ.

Let (u, v) be the solution of (3.7) generated by g. We have

u(x) = H(x)

∫ x

Q
H−1BHT−1 ds(

∫ R

Q
H−1BHT−1 dx)−1c

v(x) = HT−1(

∫ R

Q
H−1BHT−1 dx)−1c,

where c = (c0, . . . , ck−1, 1, 0, . . . , 0) ∈ Rn.

∫ R

Q
xα(g(n))2 dx = cT (

∫ R

Q
H−1BHT−1 dx)−1c =

=
k+1
∑

i,j=1

ci−1cj−1(

∫ R

Q
H−1BHT−1 dx)−1,

where ck+1 = 1.

(

∫ R

Q
H−1BHT−1 dx)−1i,j=1 =

W (y1, . . . , yi−1, x
j−1/(j − 1)!, yi+1, . . . , yn)

W (y1, . . . , yi−1, xk/k!, yi+1, . . . , yn)
·

W (y1, . . . , yi−1, x
k/k!, yi+1, . . . , yn)

W (y1, . . . , yk, xk/k!, yk+2, . . . , yn)
·
W (y1, . . . , yk, xk/k!, yk+2, . . . , yn)

W (y1, . . . , yn)
.

The third term in the last product multiplied by ln x tends to γ as x → ∞. The
first two terms are bounded if i ≤ k + 1 (Lemma 4) and if i < k + 1 or j < k + 1,

by a direct computation, one can verify that the least of them is O( 1x ) as x → ∞
(i.e., multilplied by x remains bounded). Consequently,

lim
R→∞

lnR

∫ R

Q
xα(g(n))2 dx =

= lim
R→∞

lnR
k+1
∑

i,j=1

ci−1 cj−1(

∫ R

Q
H−1BHT−1 dx)−1i,j =

= lim
R→∞

lnR(

∫ R

Q
H−1BHT−1)−1k+1,k+1 = γ.
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Similarly limT→∞

∫ T
S xα(f̃ (n))2 dx = 0 implies limT→∞

∫ T
S xα(f (n))2 = 0.

Now we prove that the functions g/h, f/h are monotonic on (Q, R) and (S, T ),
respectively, in order to use the second mean value theorem of integral calculus

in computing the integrals
∫ R
Q xα(g(n))2 dx,

∫ T
S xα(f (n))2 dx. Here we follow the

method introduced in [3]. The fundamental system of the solutions of (3.3) consists
of powers of x or powers of x multiplied by ln x. Order these solutions according
to their rate of growth at ∞ and denote them u1, . . . , u2n, i.e. ui = o(ui+1) as

x → ∞, i = 1, . . . , 2n−1. One of these solutions, say yj , is xk, this solution replace
by h. It is not difficult to verify that this system of solutions (with h denoted
again yj) is the Descartes system of solutions for large x, i.e. W (yi1 , . . . , yik) > 0
for large x, whenever 1 ≤ i1 < i2 < · · · < ik ≤ 2n, k = 1, . . . , 2n. Denote
z1 = −(y1/h)′, . . . , zj−1 = −(yj−1/h)′, zj = (yj+1/h)′, . . . , z2n−1 = (y2n/h)′. We

have z1 = −(y1/h)′ = h−2W (y1, h) > 0, W (z1, z2) = h−3W (y1, y2, h) > 0 and
similarly W (z1, . . . , zi) > 0, i = 3, . . . , 2n− 1, hence z1, . . . , z2n−1 form the Markov
system of solutions of a certain (2n− 1) order linear differential equation which is,
by Lemma 3, eventually N-disconjugate.

Since the function g(x) is a solution of (3.3), we have

g(x) =

j−1
∑

i=1

diyi(x) + djh(x) +

2n
∑

i=j+1

diyi(x);

hence

[g(x)/h(x)]′ =

2n
∑

i=1
i6=j

(yi/h)′di = −

j−1
∑

i=1

dizi +

2n−1
∑

i=j

di+1zi,

where di are real constants. The function (g/h)′ verifies boundary conditions

(g/h)(i)(Q) = 0 = (g/h)(i)(R), i = 1, . . . , n − 1, i.e., it has (2n − 2) zeros (counting
multiplicity) on [Q, R] and if Q is sufficiently large, the eventual N-disconjugacy
of the equation with solutions z1, . . . , z2n−1 implies that (g/h)′ does not vanish on
(Q, R), hence g/h is monotonic on this interval. Analogously we can prove that the
function f/h is monotonic on (S, T ).

The second mean value theorem of integral calculus applied to the integrals
∫ R
Q qg2 dx,

∫ T
S qf2 dx gives

∫R
Q qg2 dx =

∫R
Q qh2(g/h)2 dx =

∫ R
ξ1

qh2 dx, ξ1 ∈ (Q, R).

Similarly
∫ T
S qf2 dx =

∫ ξ2
S qh2 dx, ξ2 ∈ (S, T ). The remaining part of the proof is

the same as in Theorem 1. The proof is complete. �

Remark 2. Similarly to Theorem 2, Theorem 1 can be also formulated in a more

general form. More precisely, if σ is such that xσ/2 is a solution of (3.3), we can
replace (3.11) by the condition

lim sup
x→∞

x2n−1−α−σ
∫ ∞

x
q(t)(tσ/2+y1(t)+· · ·+yk(t))

2dt < −Bn,α,σ−

(σ/2
n

)

(n!)2

2n− 1− α − σ
,
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where y1, . . . , yk are the solutions of (3.3) whose rate of growth at ∞ is slower

than xσ/2 (the exact value of k depends on σ and α). For example, if α < 1 and

σ/2 ∈ {1, . . . , n − 1}, then k = σ/2 and y1 = xk−1, . . . , yk = 1. Similarly one can
modify the condition (3.12). To prove Theorem 1 in this modified form it suffices to

show that the test function y defined by (3.2) with h = xσ/2+ y1+ · · ·+ yk satisfies

lim
R→∞

∫ R

Q
xα(y(n))2 dx = γ,

lim
S→∞

∫ 2S

S
xα(y(n))2 dx = 0,

lim
S→∞

∫ S

R
xα(h(n))2 dx = ̺

and that the function g/h is monotonic on (Q, R). These statements can be proved
using only a slight modification of the method used in the proof of Theorem 2. Note

that in the case when the assumption (1.2) is needed (i.e. xσ/2 is not a solution

of (3.3)), such a modification is useless, since if q(x) ≤ 0, the integral
∫∞ q(t)tσ/2 dt

converges absolutely and an addition of a function with a slower rate of growth

at ∞ than xσ/2 plays no role.

Remark 3. In Theorems 1, 2, we have considered the cases α /∈ {1, 2, . . . , 2n− 1},
α + σ 6= 2n − 1 and α ∈ {1, 3, . . . , 2n − 1}, α + σ = 2n − 1. The case α arbitrary,
α + σ = 2n − 1 was treated in [4]. The problem of analogical conditions to (1.3),
(1.4), remains open in the case α ∈ {1, 2, . . . , 2n− 1}, σ-arbitrary (a particular case
α ∈ {2, 4, . . . , 2n − 2} n = 2, 3, was resolved in [5]). The method of computing
of constants in (1.3), (1.4) via certain Wronskians of solutions of (3.3), may turn
out to be useful in filling this gap in the theory of Nehari-type oscillation criteria
for (1.1).
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[2] Došlý O., The existence of conjugate points for self-adjoint linear differential equations, Proc.
Roy. Soc. Edinburgh 112A, (1989), 73-85.
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and sechster Ordnung, Beiträge Anal. 18 (1981), 113–132.
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