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A remark on Nehari-type oscillation criteria
for self-adjoint linear differential equations

ONDREJ DoOSLY, FRANK FIEDLER

Abstract. Oscillation criteria of Nehari-type for the equation (—1)”(xay(”) )(”) +q(x)y =0,
a € R, are established. These criteria impose no sign restriction on the function ¢(z) and
generalize some recent results of the second author.

Keywords: Nehari-type oscillation criteria, conjugate points, self-adjoint equation, princi-
pal solution

Classification: 34C10

1. Introduction.

Consider a self-adjoint linear differential equation of the even order
(1.1) (=1)"(zy ™)™ + g(a)y = 0,

where « is a real constant and ¢ € Cla,0), a > 0. Equation (1.1) is said to
be oscillatory at oo if for every b > a there exist x1,29 € (b,00), 1 < x2, and
a nontrivial solution y of (1.1) such that y® (z1) = 0 = yD(a3), i =0,...,n — 1.
The points z1, o are said to be (mutually) conjugate relative to (1.1).

Nehari [11] investigated the special case & =0, n =1, ¢(z) < 0 and proved that
(1.1) is oscillatory at oo provided

o
lim xl_a/ q@®)t%dt < -1 —
€T

r—00

41 —-0)

This result was generalized and extended by several authors [4], [5], [8],[9], [10] and
in [6], [7] the following results were proved.

Theorem A. Let o ¢ {1,2,...,2n — 1} and
(1.2) q(z) <0 forlarge .
If a + 0 < 2n — 1, suppose

(°2)" (n1)?

o0
(1.31) lim inf 22"~ 1477 / ¢()t% dt < =Bnao — 52—,

Tr—00
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if a + 0 > 2n — 1, suppose
2 2
(7)%)"(n)”

xr
(1.32) lmmm%”ﬂ%jﬁquﬂ<—&mﬁ—%:7?5??

r—00

Bh.a,0; Bma,o being nonnegative real constants depending on n,«,c. Then (1.1)
is oscillatory at co. Moreover, the assumption (1.2) can be omitted for o = 0 if we
replace in (1.312) liminf by limsup.

The precise values of the constants By, o0, BWX’U were computed in [6] and will

be given later.

Theorem B. Let (1.2) hold and o« =2n—1—-2k, k=0,1,...,n—1. If

o0
(1.4) liminf In :C/ gtk dt < —(k!(n —1— k)2,
x

T—00

then (1.1) is oscillatory at oo. Moreover, for k = 0, the assumption (1.2) can be
omitted if we replace in (1.4) liminf by lim sup.

The aim of this paper is to find further values of the constants ¢ and k for which
(1.2) is not necessary if we replace in (1.312), (1.4) liminf by limsup. In this case
we formulate Theorem B in a more general form. We also give the outline of an
alternative method of computation of the constants By .o, Bn,aﬂ, which may be
a little simpler than that given in [6], [7].

The main idea of the proofs of our statemennts is the same as in [6], [7] and it is
based on the following theorem.

Theorem C. Equation (1.1) is oscillatory at oo if and only if for every b > a there

[}
exist x1,x2 € (b,00), x1 < x2, and a nontrivial function v € W3'(x1,x2) such that

T2

I(v;z1,m0) = /m (2% (0™ (2))2 + ¢(2)v?(2)]dz < 0.

1

o]

Recall that the Sobolev space W3'(x1,x2) consists of the functions v(z) whose
(n — 1)-th derivative is absolutely continuous, v(") € Lo(z1, ) and v (21) = 0 =
v(i)(xg), i=0,...,n—1.

2. Auxiliary statements.
Seft-adjoint linear differential equations of the even order are closely related to the

linear Hamiltonian systems (LHS). If y is a solution of (1.1), then u = (y, ...,y 1),
v = ((=1)" L (zoy) (=) 2oy} is a solution of the system
(2.1) u' = Au+ B(z)v, v =C(z)u— ATv,
where
B(z) = diag{0,...,0,27%},

(2.2) C(z) = diag{q(2),0,...,0},



A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations 449

1, forj=i+1, i=1,...,n—1,

0, elsewhere.

A=Am={

We say that the solution (u,v) of (2.1) is generated by the solution y of (1.1).
Two points 1,22 € [a,00) are said to be conjugate relative to (2.1) if there exists
a nontrivial solution (u,v) of (2.1) such that u(x1) = 0 = u(x2). System (2.1) is
said to be disconjugate on an interval I whenever there exists no pair of points of I
which are conjugate relative to (2.1) and this system is said to be nonoscillatory
at oo if there exists b € (a, 00) such that (2.1) is disconjugate on (b, 00). It is obvious
that z1, 22 € (a,00) are conjugate relative to (1.1) if and only if they are conjugate
relative to (2.1) with A, B, C given by (2.2).
Simultaneously with (2.1) consider the matrix system

(2.3) U' = AU + B(z)V, V'=C(z)U - ATV,

where U, V' are n x n matrices. A solution (U, V') of (2.3) is said to be self-conjugate
if UT (x)V(x) — VT (2)U(x) = 0. A self-conjugate solution (Up, Vp) of (2.3) is said
to be principal at oo if Up(z) is nonsingular for large = and

xinéo(/m Us M (s)B(s)UT " (s)ds) ™! = 0.

0

Let (U1, V1) be a solution of (2.3) which is linearly independent of (Up, Vp) (i.e.
(Uo, Vo), (U1, V1) form the base of the solution space of (2.3)), then

lim Ul_l(:v)Uo(:v) =0.

r—00

The principal solution of (2.3) at co is determined uniquely up to a right multiple by
a constant nonsingular n x n matrix and exists if and only if (2.1) is nonoscillatory
at co. A solution (Uy, V1) is said to be nonprincipal at oo if

lim (/m U (s)B(s)UL 71 (s)ds) ™t = M,

r— 00
0

where M is a nonsingular n x n matrix. For a more detailed information concerning
LHS (2.1) and their principal solutions see, e.g., [1].

Lemma 1 [1, Chap. II]. Let (U,V) be a self-conjugate solution of (2.1) such that
the matrix U(z) is nonsingular on I C [a,00), xg € I. Then

(U(x),V(2) = (U(x) /x U~ (s)B(s)UT H(s)ds,

(]

V(a) /x U~1(s)B(s)UT~L(s)ds + UT(x))

(]

is also a self-conjugate solution of (2.3).
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Lemma 2 [1, Chap. I]. Let (2.1) be disconjugate on an interval I C [a,00) and let
x1,29 € I, x1 # x9, ui,ug € R™ be arbitrary. There exists a unique solution (u,v)
of (2.1) for which u(z1) = u1, u(xa) = us.

Now consider the linear differential equation
(2.4) Y™ + 1@y 4+ o)y = 0,

where ¢; € Cla,0), i = 0,...,n — 1. Concerning this equation, we shall need
another definition of disconjugacy for linear differential equations, introduced by
Nehari. Equation (2.4) is said to be disconjugate in the sense of Nehari, shortly
N-disconjugate, on an interval I C [a,00) whenever every nontrivial solution of
this equation has at most (n — 1) zeros on I, every zero counted according to its
multiplicity, (2.4) is said to be eventually N-disconjugate if there exists b € [a, 00)
such that this equation is N-disconjugate on (b, 00).

Recall briefly oscillation properties of solutions of (2.4). A system of solutions

Y1,---,Yn of (2.4) is said to form a Markov system of solutions on I C [a,0) if n
Wronskians
Y1 . Yk
W(ylv"'vyk) = k k )
-1 -1
JED
k = 1,...,n, are positive throughout I. The system yi,...,yy, is said to form
a Descartes system of solutions on I if all Wronskians W (y;,,...,¥%;,), 1 < i1 <

-- <1 <n,k=1,...,n, are positive throughout I.

Lemma 3 [1, Chap. III|. Equation (2.4) is eventually N-disconjugate if and only
if there exists b € [a,00) such that (2.4) possesses a Markov system of solutions on
(b, ) satistying the additional condition

y; >0 forlarge z,i=1,....n

2.
(2:5) Yp—1 =o(yg) for x—o0, k=2,...,u.

Moreover, a Markov system of solutions of (2.4) satisfying (2.5) form the Descartes
system of solutions for large x.

Lemma 4 [1, Chap. III]. Let y1,...,yn be a Descartes system of solutions of (2.4)
for large x satisfying (2.5). If 1 <i1 <ig < - <ip<n, 1 <j1 <jo < -+ <jp <
n, 1 < k < n, are distinct k-tuples such that i; < j5;, L =1,...k, then

T Wy v/ W e y) = 0.

Lemma 5. Let uy,...,un,v1,...,v, be real-valued functions of the class C™ 1
and let

U@) = @iV @)ho, Vi) =0 V@)
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be their Wronski matrices. If U(x) is nonsingular, then

W(U]_,.. <y Uj—1, Vg, Uit 15 - - - 7un)
W(uy,...,un) '

U @)V (2)]i; =

Proor: Taking into account the rule for computation of the entries of the inverse
matrix and the rule for the product of two matrices, the conclusion can be verified
by a direct computation. O

Lemma 6 [1, Chap. III]. Let yi,...y, € C"~! be real-valued functions, yj # 0.
Then

W(yla' . ay’n) =
DT (1 /y) s W= /93) s e /y3) - (uny5)).-

3. Main results.

Theorem 1. Let o ¢ {1,2,...,2n —1},0/2€ {0,1,....n—1}U{n—a,n—a+
1,....2n—1—a}. Ifa+ 0 < 2n — 1, suppose

(°12)" (n1)?

o0
(3.11) lim sup #1777 / a7 dt < =Bnao = 52—

Tr—00

if a4+ 0 > 2n — 1, suppose

(°12)" ()2

xX
(3.12) lim sup 2"~ 174 7 /1 a7 dt < =Buao = 52—

Tr—00
Then (1.1) is oscillatory at co.

PROOF: Let h(z) = 29/2, f(z) = (-1)%% =l — 1)L, 0 <z <1,

Case.a+o0<2n—1.

Define
0, fora<x<Q
g(x), forQ<z<R
(3.2) y(z) =< R7/2n(2), for R<z<S$
RT/zh(x)f(%:g), for S<az<T
0, for T <=z,

where 7 = 2n — 1 — a — ¢ and g(z) is the solution of the equation

(3.3) (z%yMH (™) =
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satisfying the boundary conditions
(3.4) dD@) =0, ¢DR) =R7I(R), i=0,....n-1

Note that such a solution always exists since the linear Hamiltonian system corre-
sponding to (3.3) is disconjugate on [a, c0). Using the results of [6], we get

R

lim Ia(y(n)(z))2d$ = Bn,a,cr;
R—oo Q
where
Bpaoc=0 for a>2n-1
2
n! 2(0/2 1 n—1 . .
_ ) / [ Y (- (“; a).
(k) 0 i=n—*k
o/24+a+k—2n\[(c/24+a—n—i—1\2
: . . } dx,
i+k+n n—i—1
(3.5) for 2n—1-2k<a<2n+1-2k, k=1,....n—1
and a<l1l, k=n,
S o/2 12
lim xa(y(n))2d:c = —( o)) =:p
S—oo JR 2n—1—-a—o
25
lim 2 (y™M)2dz = 0.
S—o0 Jg

To show that (1.2) can be omitted if we replace (1.31) by (3.11), we proceed as
follows. Since a ¢ {1,2,...,2n — 1}, the function g(x) is of the form

n—1

g(@) = 3 (aia’ + ba"~oH),
=0

where a;, b; are real constants, and hence

n—1
g(:ZZ)CC_U/2 _ Z aixi_0/2 + bixn—a+i—o/2.
1=0

Since ¢ is such that 27/2 is a solution of (3.3), one of the exponents of  on the
right-hand side of the last expression equals 0. It follows that [g(z)z /2] is a linear
combination of (2n—1) functions, each of them is a power of z. Order these functions
according to their exponents and denote them y1,...,y2,—1 (y2n—1 corresponds to
the greatest power). It is not difficult to verify that these functions form the Markov
system of solutions of a certain (2n—1)-order linear differential equation which is, by



A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations

Lemma 1, N-disconjugate on [a, 00). Since [g(z)z /2] is a solution of this equation
and [g(:z:):c‘”p]g:)Q =0= [g(a:):c‘”p]giR, i=1,...,n—1, [g(x)z°/2) does not
vanish on (R, Q), i.e. g(x)z~?/2 is monotonic on this interval. The function f’(z)
is a polynomial of order (2n — 2) for which fM(0)=0= f@1),i=1,...,n—1,
hence the existence of zg € (0,1) such that f/(xg) = 0 would imply f’(z) = 0 on
(0,1) — a contradiction.

Now, using the second mean value theorem of integral calculus, we have

T R S T T— ¢
/ qyzd:r:/ qudI—l—RT/ q:cada:—l—RT/ g2’ fH(—=) dx =
Q R

Q S S —X
R S T T —

:/ qx”(g:zc—”/2)2 d:v—i—RT/ qz® dx—i—RT/ qz f( )dx =
Q R S T—s

&2
= RT/ qx? dx,

1
where &1 € (Q,R), & € (S,T). According to (3.11), the integral féz qx®dzx is
negative if £1,& are sufficiently large (i.e. @ and S are sufficiently large), hence
R féz qa? dx < & f&z gx° dx. To finish the proof, we proceed in the same way as
in [6]. Let 6 > 0 be sufficiently small. By (3.1), there exists @ € [a, 00) such that
o
(3.6) 5{/ qz°dr < —Bpao —0— 46

1

whenever £ > Q. By (3.5), (3.6), R, S can be chosen such that

s
Ips = / 2y ") dz < o+ 6
R
25
Igos = / 960‘(34("))2 dr <6
S

R
IQvR - / :co‘(y("))Q d.’l? < BTL,CM,O’ + 5
Q

and
&2
5{/ gz’ dr < —Bpao—0— 36

1
whenever & > S. Consequently, I(y;Q,T) = Ig g + Ir,s + IsT + fg qy?ds <
Bn,a,o+5+g+5+5—Bn,a7U—g—35:0ifTZQS'
IT. Case « + 0 > 2n — 1.

Define
0, fora<z<Q,
S0P f(F=g), for Q<x <R,
y(x) = 87/2:17”/2, forR<z <SS,
g(x), for S<z<T,

0, forx > T,

453
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where g(x) is the solution of (3.3) satisfying the boundary conditions ¢("(S) =
ST/2(J:U/2);iS, ¢@(T)=0,i=0,...,n—1, 7 and f(z) are the same as above. To

prove that the function g(x)z~°/2 is monotonic on (S, T)), we can proceed in the

same way as in the first part of the proof and the exact value of Bma,o,

Bma,o =0 for a<l1

_ n!(0/é2)2 /oox—a{ _Zk_l(_x)z’ (n—l—i—k—a)

(Z) 1 i=0 n—k
(0/2—n+a>(0/2—n—i—1+a)}2dx

i n—k—i—1
for 2n—1-2k<a<2n+1-2k, k=1,...,n—1
and 2n—1-2k<a, k=0

n

was calculated in [6]. The proof is complete. O

Remark 1. Recall that the numbers (g), [B-real number, n-natural number, are

defined as follows: (7) = (1/n1)8(8 —1)...(8 — n + 1). Consequently, if o/2 €
{0,...,n — 1}, the second constant on the right-hand side of (3.11 2) equals zero.

In the proof we have just finished, we did not pay attention to the exact compu-
tation of the constants By o0, Bma,o since this had been done in [6]. Now make
some remarks concerning the calculation of these constants. Our observations are
based on a relation between equation (1.1) and LHS (2.1).

Let g(z) be the solution of (3.3) satisfying (3.4), denote by (u,v) the solution of
the corresponding LHS

(3.7) u' = Au+ B(z)v, v =—-ATv
generated by g and let H(z) be the solution of
(3.8) H' = AH, H(0)=1 (the identity matrix).

Then (H,0) is the solution of the matrix system associated with (3.7) and using
Lemma 1 one can directly verify that

T R
u(x):H(x)/QH—lBHT—lds(/Q H'BHTVdz)"*H Y (R)C(R)

_ gT-1 L S (R
v(z) =H (;v)(QH BH* " dx)”""H “(R)C(R),

where C(R) = R™/2 (R7/2,0/2 RO/271 .. (/A kIRo/27k+1 (712 piRo/2-n+1),
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It holds
R R
/Qxa(g(n))2dar—/Q oT (2)B(z)v(z) do =
R R
:CT(R)HT—l(R)(/ H‘lBHT_ld:c)_l/ H'BHT ' dz
Q Q
R
(/ H'BHT L dz)"'H Y (R)C(R) =
Q
= OT(R)HT—l(R)(/QR H'BHT V1 dz)"'H Y (R)C(R).
Since
1z 2%2/20 ... 2"/ (n—1)
0 1 x oo 22 (n—2)!
= /(n-2)
0.covnnntt. 0 1
hence
1 —z 22/2! (=) Lzl /(n — 1)!
() — 0 1 -z (=1)" 22772 /(n — 2)! |
0 D 0 1

n—i k o '
di(R) = R/ Z(_l)k%< /2 >(k+i)!Ra/2—k—z _
k=0

k41
n—1i
. 2n717a_i _ ki 0'/2 N
e 1;—0:( 1) k!(kﬂ, (k + ).

Now it suffices to compute the matrix (fg H-'BHT—1dz)~1
Consider the case a + 0 < 2n — 1, the case a + ¢ > 2n — 1 can be treated
analogously. By a routine computation, we get

/ZE H—lBHT—l gt — |: (_1)i+jt2n+1—oz—i—j :|n
Q i,j=1 '

(n—)n-—7H2n—a—-i—j+1) 2

If & > 2n — 1, (H,0) is a nonprincipal solution of (3.7), see [3]. Hence

xr
lim (/ H'BHT L an=1 = M,
Q

T— 00
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M being a nonsingular n x n matrix, and limp_,,, d;(R) =0,i=1,...,n. Conse-
quently,
R
Bn.ao = lim dF(R)( / H'BHTYdz)~td(R) = 0.
R—oo Q
Denote
2n—a—j5 M (_1)i+j
x .
(n—j) P (n—)2n—a—1i—j+1)i!
(_1)i+jQ2n+1—i—j—a n

D=d;;= [(n_i)!(n_j)!(Qn—oz—i—j+1)

ij=1
and let (U1, V1) be the matrix solution of (3.7) generated by y1,...,yn. If @ <1,
then (H,0) is the principal solution of this system and

lim (H Y(2)Uy(z) + D)L H Y (z)Uy (2) =

Tr—00

= lim (I + U (z)H(z)D)" ! = I,

Tr—00

i.e.
: 1 -1 _
Jim (H™ (2)U1(2) + D)™ =
xX
o I N L |
= mli)néo(/Q H "BH"""ds)”" = xlgréo Uy “(x)H ().
o (=1 (=1)°
Denote Mj = =51 2il1 rmpyi@nt I=a=i=j) "
Uy Hij =

W(M1I2n_1_a7 ) Mi_leH—Oc—’i-i-l’ x]_l/(] B ]‘)'a M’i+1x2n_a_i_1a ) Mnxn_a) _
W (Mya2n=l=o M,azn—o)

1 W(xQn—oa—l . x2n—a—i+1 :Cj—l xQn—i—a—l . xn—a)
M;(j = 1)! W (x2n—1-a  gn-a) -
L2n(i—1) V[/($2n—o¢—j7 o 7x2n—oz—i—j+27 1, x2n—a—i—j7 o 7xn—o¢—j+1)
M;(j —1)! 1121, . (n — 1)!(—1)nn+3)/2gn(n—a)

Using Lemma 6 for computing the Wronskian in the nominator, we get

W(x2n—a—j, o 7x2n—o¢—i—j—i—2, 1, x2n—a—i—j, o ’xn—a—j—i-l)

= (=)W (@2n—a—j a7 @2n—a—i—j+2)xneTiTitL
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2n—a—i—ja?r oI (n—a—j+ 1)) =

_ p(n=1)(n—a—j) 2n—a—j . Wi(zn=1, . g gnmisl )
n 2n—a—-i—j5+1)

2n—a—j
_ g D—apri-t_ Tt 2 (=D )2
n—a—i—j+1 (n —1)!

Combining these computations with the previous ones, we have

2n—a—j 1
), = ge-ebiti—t o )DL
Lo (n—i)!2n—a—i—j+1) (j—1)IM;

and
Ior= ) di(R)d;(R)UT (R H(R));; =
i,7=1
-y 5 ()8 (/2 ; n_j (—Dk (o/2 .
_i; <kZ:O k! <k+i)(k+l)!> k; k! <k+j)(k+1)!

(2n—na—])(_1)n+1n|
(n—i)!2n—a—i—j+1)(F—1)M;
Ifae(2n—1-2k2n+1-2k)\{1,...,2n — 1}, then

dT(R)(/R H'BHTVdz)~Yd(R) =
Q

— d"(R)(U1(R) - H(R)D) H(R)d(R).

n zi!

i=1 i1 ¥

Denote g; = y; — ij» then

(WL(R) + HR)D) VH(R)]; = 20 y_lvfzy_ll/(] _yi))'y“ SV

By means of Lemma 4, one can verify that if max{s,j} > k, then

[(Uy + HD) ' H); j = o R*THIHI=20) a5 R — oo

and thus

dT(R)(/R H'BHT 1 dz)~td(R) =
Q

k
= Y di(R)d;(R)[(U1(R) + H(R)D) ' H(R)]; ;,
1,5=1

whereby the entries of [(U1 + HD)™ ! H] can be computed in the same way as in the
case a < 1.

Now turn our attention to the case when a € {1,3,...,2n — 1} which is treated
by Theorem B. This theorem can be modified in the following way.
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Theorem 2. Let € {1,3,...,2n—1}, k€ {0,...,n—1}, cg,...,c1_1 € R. If

o0
(3.9) limsup ln:v/ q(t)(co+ -+ cp_1t* L+ t5)2dt < —(K(n — 1 — k)2,
x

T—00

then (1.1) is oscillatory at oo.

PROOF: Let h(z) =co+ -+ cg_12* "1+ 2F, h(z) = 2*. Define

fora<x<Q,
(x), for @ <z <R,
x), for R<x <SS,
for S<z<T,
0, forx>T,

Q o

<
—~
8
S—
Il
- >
—~
S5
:—/

where g, f are the solutions of (3.3) satisfying (3.4) and
(3.10) FO9) =n®9), fOT)y=0 i=0,...,n—1,

respectively. Further, let G, f be the solutions of (2.3) satisfying (3.4) and (3.10)
with h replaced by h. It was proved in [7] that

R
lim lnR/ 2 (f))2de = v

and
T

lim 2 (F)2dz = 0,
T—oo Jg

where v = (k!(n—k—1)!)2. We shall show that also limp_.os In R [ 2%(g"™)2 dz =

v, Imp_, fS a(f(m)24z = 0. Let (@, 7) be the solution of (3.7) generated by §.
According to (3.4), Lemma 1 and Lemma 2, one can directly verify that

T R
() :H(x)/ H—lBHT—lds(/ H'BHT Yds)e;
Q Q

R
o(x) = HT_l(:c)(/ HBHTYdz)~tep,
Q

where e 11 = (0,...,0,1,0,...,0) € R"™ with the number 1 on the (k4 1)-th place.
f g(" 2d:c = vaTBvd:E = ek_H fQ 1BHT_1d:c)ek+1. By Lemma 1,
(U1(z), V1 (x)) = fQ H-'BHT'ds, HT=1(x)) is a solution of the matrix

system corresponding to (3.7) and this solution is generated by the solutions y;(x) =



A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations

tnag

1 [ s st =1, n, see [2). [5 HTABHT s =
H L(x)Uy(z), hence

R 9% . J=1/05 1)y,
(/ H—]_BHT—]_ dS)_l — (yla" - Yi—1,T /(.7 )'7y2+17' .. 7yn)|m:R
W(yla"'vyn)

and thus

R R
lim lnR/Q xa(g("))zdgc:RlEnoo 1nRe;{+1(/Q H'BHT Y dz)tep, =

R—o0

W(y]_,...,yk,$k/k!,yk+2,-.-,yn) | R="
W(y17 e 7yn) o=

Let (u,v) be the solution of (3.7) generated by g. We have

= lim InR
R—o0

T R
u(x):H(x)/ H—IBHT—lds(/ H'BHTVdz)~te
Q Q

R
v(z) = HT_l(/ H'BHT 1 dz) e,
Q

where ¢ = (cg,...,¢,_1,1,0,...,0) € R™.

R R
/ :100‘(9("))2 dr = cT(/ H lpgT-1 dx)_lc =

Q
k+1
= > i1 1/ H'BHT 1 dz)~1,
i,j=1
where ¢4 = 1.
Wy, ¥i-1,27 71 (G = DL yig, - -
/ H~- lBHT 1dCC) L= (ylv y Yi—1, T /k(] )7yl+17 ayn)
b= W(ylu"'ayi—lax /klayi-‘rlw"uyn)
W(ylu"'uyi—lu‘rb /kluyi—‘rla"'ayn) . W(yla'"7ykaxk/k!ayk+27'-'7yn)
WYL, Y 2% /K Yhy2. - yn) W(yt, -, yn)

The third term in the last product multiplied by In x tends to v as * — oo. The
first two terms are bounded if i < k+ 1 (Lemma 4) and if i <k+1lorj <k+1,
by a direct computation, one can verify that the least of them is O(%) as T — 00

(i.e., multilplied by « remains bounded). Consequently,

R
lim lnR/ (g2 d =

R—o0 Q
k+1 R
= lim InR > ciico 1/ H'BH" ldw); =
—)OO 7] 1 Q k2

= lim InR( H lpgT-1)-1

R k+lk+1 = 7
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Similarly imy_, o fg 22(f(")2 dz = 0 implies limp_, o fg 2o (fM)2 = 0.

Now we prove that the functions g/h, f/h are monotonic on (@, R) and (S,T),
respectively, in order to use the second mean value theorem of integral calculus
in computing the integrals fg 2%(g()2 da, T 2(f)2 dz. Here we follow the
method introduced in [3]. The fundamental system of the solutions of (3.3) consists
of powers of x or powers of x multiplied by In z. Order these solutions according
to their rate of growth at co and denote them wuq,...,ugp, i.e. u; = o(u;41) as
r — 00,7 =1,...,2n—1. One of these solutions, say y;, is xk, this solution replace
by h. It is not difficult to verify that this system of solutions (with h denoted
again y;) is the Descartes system of solutions for large x, i.e. W(y;,,..., ;) >0
for large x, whenever 1 < 41 < ig < -+ < 4 < 2n, k = 1,...,2n. Denote
2 =—Wi/h)s. . zjm1 = —(yi-1/h), 25 = /b, zon—1 = (y2n/h). We
have 23 = —(y1/h) = h=2W(y1,h) > 0, W(21,22) = h_3W(y1,y2,h) > 0 and
similarly W(z1,...,2;) >0,i=3,...,2n—1, hence 21, ..., 29,—1 form the Markov
system of solutions of a certain (2n — 1) order linear differential equation which is,
by Lemma 3, eventually N-disconjugate.

Since the function g(x) is a solution of (3.3), we have

Zdzyz +d h Z dzyz

i=j+1
hence
2n 2n—1
[g(z)/h(:c)] Z yz/h Z d;z; + Z di112i,
1
Zi#]

where d; are real constants. The function (g/h)’ verifies boundary conditions
(g/W) Q) =0=(9/h)D(R),i=1,...,n—1, ie., it has (2n — 2) zeros (counting
multiplicity) on [@, R] and if @ is sufficiently large, the eventual N-disconjugacy
of the equation with solutions z1,. .., 22,1 implies that (g/h)" does not vanish on
(Q, R), hence g/h is monotonic on this interval. Analogously we can prove that the
function f/h is monotonic on (S, T).

The second mean value theorem of integral calculus applied to the integrals

T .
)G ag? dz, [T af? du gives [[Fag? dw = [ qh?(g/m) du = [Fqh? dz, & € (Q, R).
Similarly fg qf?dr = féQ qh?dzx, & € (S,T). The remaining part of the proof is
the same as in Theorem 1. The proof is complete. 0

Remark 2. Similarly to Theorem 2, Theorem 1 can be also formulated in a more
general form. More precisely, if ¢ is such that 27/2 is a solution of (3.3), we can
replace (3.11) by the condition

(73 (n))?

oo
lim sup 2 —1-a= / q(t)(t7 +y1 () + - +yp()2dt < —Bpgo— =1t
= 2n—-1-a—-o

r—00



A remark on Nehari-type oscillation criteria for self-adjoint linear differential equations

where yi, ...,y are the solutions of (3.3) whose rate of growth at oo is slower
than 27/2 (the exact value of k depends on o and ). For example, if a < 1 and
0/2€{l,...,n—1}, then k = 0/2 and y; = 2¥*~1,... 4, = 1. Similarly one can
modify the condition (3.12). To prove Theorem 1 in this modified form it suffices to
show that the test function y defined by (3.2) with h = 27/2 4 y1 + -+ -+ y; satisfies

R
lim 2% (y(M)2 dz = ~,
R—o0 /g
28
lim 2% (yM)2 dx = 0,
S—oo Jg
S
lim (WM dx = o
S—oo JR

and that the function g/h is monotonic on (@, R). These statements can be proved
using only a slight modification of the method used in the proof of Theorem 2. Note
that in the case when the assumption (1.2) is needed (i.e. 2°/2 is not a solution
of (3.3)), such a modification is useless, since if ¢(z) < 0, the integral [ q(t)t7/2 dt
converges abs;)zlutely and an addition of a function with a slower rate of growth
ag

at oo than z plays no role.

Remark 3. In Theorems 1, 2, we have considered the cases o ¢ {1,2,...,2n—1},
at+o#2n—1and a € {1,3,...,2n — 1}, a + 0 = 2n — 1. The case « arbitrary,
a+ o = 2n — 1 was treated in [4]. The problem of analogical conditions to (1.3),
(1.4), remains open in the case o € {1,2,...,2n — 1}, o-arbitrary (a particular case
a € {2,4,...,2n — 2} n = 2,3, was resolved in [5]). The method of computing
of constants in (1.3), (1.4) via certain Wronskians of solutions of (3.3), may turn
out to be useful in filling this gap in the theory of Nehari-type oscillation criteria
for (1.1).
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