Article
Keywords:
Sobolev embedding theorem; Novikov's theorem; Aumann's theorem; pseudomonotone operator; property ($M$); nonlinear elliptic equation
Summary:
We establish the existence of an optimal ``state-control'' pair for an optimal control problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving nonmonotone nonlinearities.
References:
[1] Barbu V.:
Optimal Control of Variational Inequalities. Research Notes in Math., vol. 100, Pitman, Boston, 1984.
MR 0742624 |
Zbl 0696.49021
[2] Browder F.:
Pseudomonotone operators and nonlinear elliptic boundary value problems on unbounded domains. Proc. Nat. Acad. Sci. U.S.A. 74 (1977), 2659-2661.
MR 0445124
[4] Delahaye J.-P., Denel J.: The continuities of the point to set maps: Definitions and equivalences. Math. Programming Study 10 (1979), 8-12.
[5] Levin V.:
Borel sections of many-valued maps. Siberian Math. Journal 19 (1978), 434-438.
MR 0501769
[6] Lions J.-L.:
Optimal Control of Systems Governed by Partial Differential Equations. SpringerVerlag, New York, 1971.
MR 0271512 |
Zbl 0203.09001
[7] Raitum U.E.:
On optimal control problems for linear elliptic equations. Soviet. Math. Doklady 20 (1979), 129-132.
MR 0520593
[8] Saint-Beuve M.-F.:
On the extension of von Neumann-Aumann's theorem. Journ. Funct. Analysis 17 (1974), 112-129.
MR 0374364
[9] Zeidler E.: Nonlinear Functional Analysis and Applications II. Springer-Verlag, Berlin, 1990.
[10] Zolezzi T.:
Teoremi di esistenza per problemi di controllo ottimo retti da equazioni ellitiche o paraboliche. Rend. Sem. Mat. Univ. Padova 44 (1970), 155-173.
MR 0308891