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An existence theorem for a class of nonlinear
elliptic optimal control problems

NIKOLAOS S. PAPAGEORGIOU

Abstract. We establish the existence of an optimal “state-control” pair for an optimal con-
trol problem of Lagrange type, monitored by a nonlinear elliptic partial equation involving
nonmonotone nonlinearities.

Keywords: Sobolev embedding theorem, Novikov’s theorem, Aumann’s theorem, pseu-
domonotone operator, property (M), nonlinear elliptic equation
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1. Introduction.

The purpose of this note is to establish the existence of optimal controls for a class
of nonlinear elliptic control systems of Lagrange type, with control constraints. In
the past, the question of the existence of optimal controls for elliptic systems was
addressed primarily for linear and semilinear ones. We refer to the works of Barbu [1,
Chapter 3], Lions [6, Chapter 2], Raitum [7] and Zolezzi [10]. Here we employ the
Cesari—Rockafellar technique, to establish the existence of optimal trajectories for
a large class of strongly nonlinear, elliptic distributed parameter systems.

2. Preliminaries.

Let Z be a bounded domain in R" with smooth boundary 97 = I". We will be
considering the following nonlinear elliptic control problem of Lagrange type:

J(x,u) = /ZL(Z, 0(z(2)),u(z))dz — inf =m

()| 5t Spapem (- DD (Ao n(@() + 15, 0(2(2)), u(z)) = 0 on Z
DBz |p=0for |8] <m —1,u(z) € U(z,0(z, (2))) a.c.,u(-) measurable.

Here o = (a1,...,ay) is a multi-index of positive integers, |a| = 7' ;«; is the
length of the multi-index and D = D" ... Do with D; = % Also n(x) =
{DZ() : la] <m} and 8(x) = {DFa() : |6] < m —1}.

We will need the following hypotheses on the data of (x):
H(A): Aa: ZxR'™ — R(nm = %ﬂ) are functions s.t.

(1) for every n € R™m z — A,(z,m) is measurable,
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(2) for every z € Z,n — Aa(z,n) is continuous,
(3) |Aa(zm)| < a(z) + B[Pt ae. with a() € LL(Z),p.q>1 4+ 5 =1,
(4) if m = {ng : [B] <m — 1} and n2 = {ny : [y| = m}, then

E|4{|:mAO!(Zu 7717772) - A(X(Zanlu né)(nla - né,a) > 07
(5) there exists ¢ > 0 and k(-) € L1(Z) s.t.

Eaj<mAa(z,m1,m2)n2,0 > cln2|P — k(2) ae.

H(f): f:ZxRm=1 xR = R(npy,_q = &Em=l!

m) is a funCtiOIl s.t.
for every (0,u) € R"—1 x R, 2z — f(z,6,u) is measurable,
for every z € Z, (6,u) — f(2,0,u) is continuous,
If(2,0,u)] < a1(z) +b(|6] + ||ul)P~! a.e. with a1(-) € Li(Z),bl > 0.
Z\81<m—1 f(z,0,u)0q > —c1 ae. for all u € U(z,6), with ¢; > 0.

1
(2
(3
(

HU): U:ZxR'wm1 Pf(]Rl) = {B C R': nonempty, closed } is a multi-
function s.t.
(1) (2,0) — U(z,0) is graph measurable; i.e. GrU = {(z,0,u) € Z x R"m~-1 x
R' :u € U(z,0)}eB(Z) x B(R*~1) x B(RY), with B(Z) (resp B(R"m~1),
B(R')) being the Borel o-field of Z (resp of R™m~1 R},
(2) for every z € Z,0 — U(z,0) is an upper semicontinuous (u.s.c.) multifunc-
tion; i.e. for every V C R! open U(z, V)T = {# € R"1 : U(2,0) C V} is
open in R™"-1 (see Delahaye—Denel [4]),
(3) [U(2,0)] = sup{[[v]| : v € U(2,0)} < aa(z) + b2||0]| ae. with az(-) €
LF(Z),by > 0.

(L): L:ZxR"-1 xR —R=Ru{+oco} is integrand s.t.

(1) (z,0,u) — L(z,0,u) is measurable,
(2) for every z € Z,(0,u) — L(z,0,u) is Ls.c.,
(3) ¥(z) —r(||0] + lull) < L(z,6,u) ae., with ¢(-) € L (Z), r > 0.

It is well known, even from the theory of finite dimensional systems, that an
optimal control need not exist, unless some appropriate convexity hypotheses are
present (recall Cesari’ property Q; see Cesari [3]). So we make the following hy-
pothesis:

He: Q(z,0)={(v,p) eRxR:v+ f(z,0,u) =0,L(2,0,u) < p,u € U(z,0)} is
convex for every (z,6) € Z x R"m-1,

Note that this hypothesis is automatically satisfied, if the control v enters linearly
in the dynamics of the system, the control constraint multifunction U (-, -) is convex
valued and for every (z,0) € Z x R™m~1 the cost integrand L(z,6,-) is convex.

Let X be areflexive Banach and let A : X — X* be an operator. We say that A(-)
has the property (M), if z,, — z in X, Az, — z* in X* and lim(Azn, Tn) x* X ,
imply that Az = a™* (see for example Zeidler [9, Definition 27.1, p. 538]).

W
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Optimal control

Finally let us recall two important results from the measure theory which we
will need in the proof of our main theorem. We say that a topological space Y
belongs in the class oM K, if it is representable in the form Y = (J72 | Kp, where
for each n > 1, K, is metrizable compact. The class c M K includes in particular
all separable, metrizable locally compact spaces and the duals of separable Banach
spaces endowed with the weak* topology. The following theorem is known in the
literature as “Novikov’s projection theorem” and can be found in Levin [5, Lemma 2,
p. 435]. Recall that a Polish space is a complete, separable metrizable space.

Theorem 2.1. (Novikov). If T is a Borel set in a Polish space, Y € cMK,T' C
T xY is Borel and I'(t) = {y € Y : (t,y) € I'} is closed for every t € T, then the
projection projr(T') of the set T onto T is a Borel set.

The second measure theoretic result that we will need, is “Aumann’s selection
theorem”. It was first proved by Aumann for Polish spaces and in its present form
can be found in Saint-Beuve [8, Theorem 3, p. 119]. Recall that a Souslin space is
the continuous image of a Polish space. So a separable Banach space endowed with
the weak topology is a Souslin space. Hence a Souslin space is always separable,
but need not be metrizable.

Theorem 2.2 (Aumann). If (Q,Y) is a complete measurable space, Y is a Souslin
space and T : Q — 2Y \ {}} is a multifunction s.t. GiT = {(w,y) € AxY :y €
I'(w)}eX x B(Y'), then there exists a map v : Q — Y, (X, B(Y'))-measurable s.t. for
all w € Q,vy(w) € T'(w).
3. Main theorem.

In this section, using the hypotheses of Section 2, we state and prove an existence
theorem for the Lagrange optimal control problem (x).

Theorem 3.1. If hypotheses H(A), H(f), H(U), H(L) and H. hold, then (x) ad-
mits an optimal admissible “state-control” pair, i.e. there exists a pair (r,u) €
Wy (Z) x LP(Z, RY) which satisfies the constraints of (x) and J(z,u) = m.

PROOF: Let M : Z x R" x R — 2&' be the multifunction defined by

M(z,0,v) ={ueU(z0):v+ f(z,0,u) =0}.
Let 6p7(2,0,0)(-) be the indicator function of the set M(z,0,v) (i-e. dpr(;,9.)(u) =0,
if u € M(z,0,v),+oc otherwise) and set p(z,0,v) = inf{L(z,0,u) + dpr(z,9,0) (1) :
u € Rl}. So p(z,0,v) measures the minimum cost necessary to produce the “veloc-

ity” v, given the space-state pair (z,6) and using only admissible controls. We will
establish some properties of p(z, 0, v) that we will need in the sequel.

Claim #1. p(-,-,-) is Borel measurable.
We need to show that given A € R, the set

H\) ={(z2,0,v) € ZxR" 1 xR :p(z,60,v) <A}
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is a Borel set in Z x R"~1 x R. Let U(z,6) = U(z,0) x R. Because of hypotheses
H(U)(1),U(-,-) is graph measurable. Also let ¢ : Z x R"»~1 x R x Rl — Z x
R™-1 x R! x R be defined by q(z,0,v,u) = (z,0,u,v). Clearly q(,-,,-) is Borel
measurable and so V = ¢~ 1(GrU) € B(Z) x B(R"™ 1) x B(R) x B(R!). Also note
that since by hypotheses H(f) (1) and (2), f(z, 0, u) is measurable in z, continuous
in (0,u) (i.e. a Carathéodory function), it is jointly measurable and so we have

GrM = {(z,0,v,u) € Viv + f(z,0,u)}eB(Z) x B(R™ 1) x B(R) x B(R).
Hence, (z,0,v,u) — 5M(Z’97v)(u) is a Borel measurable, R-valued integrand.
This observation combined with hypothesis H(L) (1) implies that (z,0,v,u) —
L(z,0,u) + 6M(Z79’U)(u) is a Borel measurable, R-valued integrand. Now, note that
since by hypothesis L(z,-,-) is l.s.c. and since M (z,0,v) is compact, if it is also
nonempty, the infimum involved in the definition of p(z,0,v) is attained. So we

have

H(\) ={(z,0,v) € ZxR" 1 xR :p(z,0,v) <
=projzwrrm—1 xr1(2,0,v,u) : L(z,0,u) <
=projzygrm-1 xg{(z,0,v,u) : L(z,0,u) +

A} =
Mu € M(z,0,v)} =

O (z,0,0) () < A}

From what we have proved above, we have H(\) = {(z,0,v,u) : L(z,0,u) +

S0i(z00) (1) < A} € B(Z) x B(R™™-1) x B(R) x B(R). Since Z x R"m~1 x R is
a Borel set in the Polish space R x R™m~1 x R and for every (z,0,v) € Z x R"m~1 x
R, H(\)(z,0,v) = {u € R' : (2,0,v,u) € H(\)} is clearly closed (since L(z,0,) is
Ls.c. and M (z,0,v) is closed), invoking Novikov’s theorem (see Theorem 2.1), we
deduce that

H(\) = projzygrm—1xg H(\) € B(Z) x BR"™~1) x B(R) = B(Z x R"~1 x R)
= p(-,-,-) is Borel measurable as claimed.

Claim #2. For every z € Z,p(z,-,-) is Ls.c.
We need to show that given A € R, the level set
R\ = {(0,0) € R™1 x R p(z,0,0) < A}

is closed. To this end let {(6y, vn)}n>1 € R(A) and assume that (6, vy,) — (0,v) in
R™m—1 x R. Since p(z,0n, vn) < A, we have that M(z,0p,v,) # 0 for every n > 1.
So by Weierstrass’ theorem, we can find uy, € U(z,0,)n > 1 s.t. p(z,0n,vp) =
L(z,0y,uy). Using hypothesis H(U) 3 and by passing to a subsequence if necessary,
we may assume that u, — u in R!. Then because of hypothesis H(U) (2), we have
u € imU(z,0,) = {v/ € R : lim,,_, . d(u',U(z,6,)) = 0} C U(z,6) (see Delahaye—
Denel [4]). In addition because of hypothesis H(f) (2), we have v, + f(z, 0p, un) —
v+ f(z,0,u) = v+ f(2,0,u) = 0. Therefore u € M(z,0,v). Furthermore, using
hypothesis H(L) (2) we have

p(Z, 95 1}) S L(Za 97 U) S h_mL(Za e’na Un) = h_mp(zv envvn) S )\
=(0,v) € R(\)
=R(A) is closed and so p(z,,-) is Ls.c. as claimed.
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Claim #3. For every (z,6) € Z x R"m~1 p(z,0,-) is convex.

Note that epip(z,0,-) ={(v, ) € Rl x R : p(2,6,v) < pu} =
={(v,p) R xR : L(z,0,u) < p,u € U(z,0), v+
+ f(z,0,u) =0} =
=Q(z,0).

But the latter is by hypothesis H. convex. So the epigraph of p(z, 0, -) is convex,
hence the function is convex as claimed.

Now let {(zn, un)}n>1 € Wy"P(Z) x LP(Z, RY) be a minimizing sequence for our
problem (x). Let A : Wy"P(Z) — W=™4(Z) = WP (Z)*be the nonlinear operator
corresponding to the elliptic partial differential operator via Dirichlet form

a(@,9) = Sjaj<m /Z Aa(2n((2))) Dy (2) dz, 2,y € WI™(2),

ie. afr,y) = (Az,y), where by (-,-) we denote the duality brackets for the
pair (Wy"P(Z),W="4(Z)). Also let F . LP(Z,R"m-1) x [P(Z, R — LI(Z) be
the Nemitsky operator corresponding to the function f(-,-,-)-, i.e. F(z,u)(z) =
f(z,0(x(2)),u(z)). Using hypothesis H(A) (5) and H(f) (4) and recalling (see for

1
example Zeidler [9, p. 1033]) that (X},—,, [[D*z|P)? is an equivalent norm on

Wy (Z), we get for every n > 1

0= <A($n)7$n>+<F(Inaun)7$n> > é||$n||a/gw(z)_ HkHLd(Z)_élv with ¢,é1 >0

= lanlyma g < 7 [IFlaz) ]

Therefore {z;,},,>1 is bounded in Wy"?(Z). Since the latter is a reflexive sepa-
rable Banach space, by passing to a subsequence if necessary, we may assume that
T — x in Wy"P(Z). But from the Sobolev embedding theorem, we know that
Wy (Z) — Wgn_l’p(Z) compactly. Hence we get that z;, — = in Wgn’_l’p(Z).
Also from hypotheses H(f)(3) and H(U) (3) we see that there exists M1 > 0 s.t.
||F(xn,un)|\Lq(Z) < Mj for all n > 1. Since A(xn) + F(zn,un) = 0,n > 1, we
see that {A(zn)},>1 is bounded in L9(Z). Hence by passing to a subsequence if
necessary, we may assume that A(z,) = y in L(Z). Furthermore, note that since
A(zn) € LUZ), we have (A(zn), zn) = (A(zn), Tn) [a(2),1r(7) and also A(zn) = y
in L9(Z), while =, = z in LP(Z) (because Wy"P(Z) — LP(Z) compactly by
Sobolev’s embedding theorem). Hence limy, oo (A(2n), 2n) = (y,2z). But from
Theorem 1 of Browder [2], we know that A is a pseudomonotone operator, in par-
ticular, it has property (M) (see Zeidler [9, Proposition 27.7, p. 588]). Hence
y = A(x); ie. A(zy) = A(z) in LY(Z). Since z,, = z in Wom_l’p(Z)7 we may
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assume that 0(xy,)(z) — 0(z)(2) a.e.. So because of the claims #1, #2 and #3 and
using Theorem 10.8 i, p. 352 in Cesari [3], we have

/ P2, 0(2(2)), Ax)()) dz <
Z

Z

Therefore p(z,0(x(z)),u(z)) is finite for almost all z € Z. By redefining the
function on a Lebesgue null set, we can say that p( ,0(x(2)),u(z)) is finite for ev-
ery z € Z. Hence for every z € Z, M(z,0(x(2)), A(z)(2)) # 0. Let E(z) = {u €
M(z,0(x(2)), A(x)(2)) : L(z,0(x(2)),0,u) = p(z,0(x(2)), A(z)(2))}. Recalling that
M(-,-,-) is graph measurable and since L(-,-,-) and p(-, -, -) are measurable (see hy-
pothesis H (L) (1) and the claim #1, respectively), we get that GrE € £(Z) x B(R!),
with £(Z) being the Lebesgue completion of the Borel o-field B(Z). Apply Au-
mann’s selection theorem (see Theorem 2.2), to get u : Z — R Lebesgue measurable
s.t. u(z) € E(z) for all z € Z. Then we have

/p(Zﬁ(ﬂC(Z))aA(w)(Z))dZ = / L(z,0(x(2)), u(z)) dz < m
Z Z

Slaj<m (=D D¥(Aa (2, 1(x(2))) + f(2,0(2(2)),u(z)) = 0 ace. on Z
DP2(2) |p=0 18] <m —1,u(z) € U(z,0(x(2))) a.c.

u(+) is measurable.

Thus (z,u) € Wy"P(Z) x LP(Z, RY) is an admissible state-control pair and so we
have J(z,u) = m. Therefore (z,u) is the desired solution of (x). O
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