Previous |  Up |  Next

Article

Keywords:
$\operatorname{UC}$ space; boundedly $\operatorname{UC}$ space; boundedly compact space; Atsuji space; uniform continuity on bounded sets; topology of uniform convergence on bounded sets; Attouch--Wets topology
Summary:
A metric space $\langle X,d\rangle$ is called a $\operatorname{UC}$ space provided each continuous function on $X$ into a metric target space is uniformly continuous. We introduce a class of metric spaces that play, relative to the boundedly compact metric spaces, the same role that $\operatorname{UC}$ spaces play relative to the compact metric spaces.
References:
[At1] Atsuji M.: Uniform continuity of continuous functions on metric spaces. Pacific J. Math. 8 (1958), 11-16. MR 0099023
[At2] Atsuji M.: Uniform continuity of continuous functions on uniform spaces. Pacific J. Math. 13 (1961), 657-663. MR 0165489 | Zbl 0102.37703
[AW] Attouch H., Wets R.: Quantitative stability of variational systems: I. The epigraphical distance. to appear, Trans. Amer. Math. Soc. MR 1018570 | Zbl 0753.49007
[ALW] Attouch H., Lucchetti R., Wets R.: The topology of the $\rho $-Hausdorff distance. to appear, Annali Mat. Pura Appl. Zbl 0769.54009
[AP] Azé D., Penot J.-P.: Operations on convergent families of sets and functions. Optimization 21 (1990), 521-534. MR 1069660
[Be1] Beer G.: Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance. Proc. Amer. Math. Soc. 95 (1985), 653-658. MR 0810180 | Zbl 0594.54007
[Be2] Beer G.: More about metric spaces on which continuous functions are uniformly continuous. Bull. Australian Math. Soc. 33 (1986), 397-406. MR 0837486 | Zbl 0573.54026
[Be3] Beer G.: UC spaces revisited. Amer. Math. Monthly 95 (1988), 737-739. MR 0966244 | Zbl 0656.54022
[Be4] Beer G.: Convergence of continuous linear functionals and their level sets. Archiv der Math. 52 (1989), 482-491. MR 0998621 | Zbl 0662.46015
[Be5] Beer G.: Conjugate convex functions and the epi-distance topology. Proc. Amer. Math. Soc. 108 (1990), 117-126. MR 0982400 | Zbl 0681.46014
[BDC] Beer G., Di Concilio A.: Uniform continuity on bounded sets and the Attouch-Wets topology. to appear, Proc. Amer. Math. Soc. MR 1033956 | Zbl 0677.54007
[BHPV] Beer G., Himmelberg C., Prikry K., Van Vleck F.: The locally finite topology on $2^X$. Proc. Amer. Math. Soc. 101 (1987), 168-172. MR 0897090
[BL1] Beer G., Lucchetti A.: Convex optimization and the epi-distance topology. to appear, Trans. Amer. Math. Soc. MR 1012526 | Zbl 0681.46013
[BL2] Beer G., Lucchetti A.: Weak topologies for the closed subsets of a metrizable space. preprint. Zbl 0810.54011
[CV] Castaing C., Valadier M.: Convex analysis and measurable multifunctions. Lecture Notes in Mathematics No. 580, Springer-Verlag, Berlin, 1977. MR 0467310 | Zbl 0346.46038
[DCN] Di Concilio A., Naimpally S.: Atsuji spaces - continuity versus uniform continuity. in Proc. VI Brazilian Conf. on Topology, Campinǫs-Sao Paulo, August 1988.
[Ha] Hausdorff H.: Erweiterung einer Homöomorphie. Fund. Math. 16 (1930), 353-360.
[Ho] Holá L.: The Attouch-Wets topology and a characterization of normable linear spaces. to appear, Bull. Australian Math. Soc. MR 1120389
[Hu] Hueber H.: On uniform continuity and compactness in metric spaces. Amer. Math. Monthly 88 (1981), 204-205. MR 0619571 | Zbl 0451.54024
[Le] Levine N.: Remarks on uniform continuity in metric spaces. Amer. Math. Monthly 67 (1979), 562-563. MR 0116310
[Mi] Michael E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182. MR 0042109 | Zbl 0043.37902
[MP] Monteiro A., Peixoto M.: Le nombre de Lebesgue et la continuité uniforme. Portugaliae Math. 10 (1951), 105-113. MR 0044608 | Zbl 0045.25801
[Na] Nagata J.: On the uniform topology of bicompactifications. J. Inst. Polytech. Osaka City University 1 (1950), 28-38. MR 0037501 | Zbl 0041.51601
[Pe] Penot J.-P.: The cosmic Hausdorff topology, the bounded Hausdorff topology, and continuity of polarity. to appear, Proc. Amer. Math. Soc. MR 1068129 | Zbl 0774.54008
[Ra] Rainwater J.: Spaces whose finest uniformity is metric. Pacific J. Math. 9 (1959), 567-570. MR 0106448 | Zbl 0088.38301
[RZ] Revalski J., Zhivkov N.: Well-posed optimization problems in metric spaces. preprint.
[Se] Sendov Bl.: Hausdorff approximations. Bulgarian Academy of Sciences, Sofia, 1979 (in Russian); English version published by Kluwer, Dordrecht, Holland, 1990. MR 1078632 | Zbl 0715.41001
[To] Toader Gh.: On a problem of Nagata. Mathematica (Cluj) 20 (43) (1978), 78-79. MR 0530953 | Zbl 0409.54041
[Va] Vaughan H.: On locally compact metrizable spaces. Bull. Amer. Math. Soc. 43 (1937), 532-535. MR 1563581
[Wa] Waterhouse W.: On UC spaces. Amer. Math. Monthly 72 (1965), 634-635. MR 0184200 | Zbl 0136.19802
Partner of
EuDML logo