Previous |  Up |  Next

Article

Keywords:
almost disjoint; saturated family; refinement; large cardinals
Summary:
If there is no inner model with measurable cardinals, then for each cardinal $\lambda $ there is an almost disjoint family $\Cal A_{\lambda}$ of countable subsets of $\lambda $ such that every subset of $\lambda $ with order type $\geq {\omega^{\scriptscriptstyle2}}$ contains an element of $\Cal A_{\lambda}$.
References:
[{1}] Balcar B., Dočkálková J., Simon P.: Almost disjoint families of countable sets. in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.
[{2}] Erdös P., Hajnal A.: Unsolved problems in set theory. Proc. Symp. Pure Math., vol. 13, part 1, Am. Math. Soc., R. I. 1971, 17-48. MR 0280381
[{3}] Erdös P., Hajnal A.: Unsolved and solved problems in set theory. Proc Symp. Pure Math., vol. 25, Am. Math. Soc., R. I. 1971, 269-287. MR 0357122
[{4}] Goldstern M., Judah H., Shelah S.: Saturated families, and more on regular spaces omitting cardinals. preprint. MR 1052573
[{5}] Hajnal A.: Some results and problem on set theory. Acta Math. Acad. Sci. Hung. 11 (1960), 277-298. MR 0150044
[{6}] Hajnal A., Juhász I., Soukup L.: On saturated almost disjoint families. Comment. Math. Univ. Carolinae 28 (1987), 629-633. MR 0928677
[{7}] Jech T.: Set Theory. Academic Press, New York, 1978. MR 0506523 | Zbl 1007.03002
[{8}] Komáth P.: Dense systems of almost disjoint sets. in Proc. Coll. Soc. J. Bolyai 37, Finite and Infinite Sets, Eger, 1981, vol I.
Partner of
EuDML logo