[A] Arhangel'skii A.V.: Martin's axiom and the construction of homogeneous bicompacta of countable tightness. Soviet Math. Dokl. 17 (1976), 256-260.
[AF] Arhangel'skii A.V., Franklin S.P.:
Ordinal invariants for topological spaces. Michigan Math. J. 15 (1968), 313-320.
MR 0240767
[Ba] Balogh Z.:
On compact Hausdorff spaces of countable tightness. Proc. Amer. Math. Soc. 105 (1989), 755-764.
MR 0930252 |
Zbl 0687.54006
[Be] Bernstein A.R.:
A new kind of compactness for topological spaces. Fund. Math. 66 (1970), 185-193.
MR 0251697 |
Zbl 0198.55401
[BM] Boldjiev B., Malykhin V.:
The sequentiality is equivalent to the $\Cal F$-Fréchet-Urysohn property. Comment. Math. Univ. Carolinae 31 (1990), 23-25.
MR 1056166 |
Zbl 0696.54020
[C] Comfort W.W.:
Ultrafilters: some old and some new results. Bull. Amer. Math. Soc. 83 (1977), 417-455.
MR 0454893
[CN1] Comfort W.W., Negrepontis S.:
On families of large oscillation. Fund. Math. 75 (1972), 275-290.
MR 0305343 |
Zbl 0235.54005
[CN2] Comfort W.W., Negrepontis S.:
The Theory of Ultrafilters. Grundlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974.
MR 0396267 |
Zbl 0298.02004
[F] Fedorčuk V.V.: Fully closed mappings and the compatibility of some theorems of general topology with the axioms of set-theory. Math. USSR Sbornik 28 (1976), 1-26.
[G1] Garcia-Ferreira S.: Various Orderings on the Space of Ultrafilters. Doctoral Dissertation, Wesleyan University, 1990.
[K1] Kombarov A.P.:
On a theorem of A. H. Stone. Soviet Math. Dokl. 27 (1983), 544-547.
Zbl 0531.54007
[K2] Kombarov A.P.:
Compactness and sequentiality with respect to a set of ultrafilters. Moscow Univ. Math. Bull. 40 (1985), 15-18.
MR 0814266 |
Zbl 0602.54025
[M] Mills Ch.: An easier proof of the Shelah $P$-point independence theorem. Rapport 78, Wiskundig Seminarium, Free University of Amsterdam.
[Sa] Savchenko I.A.:
Convergence with respect to ultrafilters and the collective normality of products. Moscow Univ. Math. Bull. 43 (1988), 45-47.
MR 0938072 |
Zbl 0687.54004
[W] Wimmers E.L.:
The Shelah $P$-point independence theorem. Israel J. Math. 43 (1982), 28-48.
MR 0728877 |
Zbl 0511.03022