Article
Keywords:
$\delta $-continuous selections; small multifunctions; paracompactness; orthocompactness
Summary:
The spaces for which each $\delta$-continuous function can be extended to a $2\delta$-small point-open l.s.c\. multifunction (resp. point-closed u.s.c\. multifunction) are studied. Some sufficient conditions and counterexamples are given.
References:
[1] Burke D.K.:
Orthocompactness and perfect mappings. Proc. Amer. Math. Soc. 79 (1980), 484-486.
MR 0567998 |
Zbl 0433.54005
[2] Burke D.K.:
Covering properties. Chapter 9 of Handbook of set-theoretic topology, edited by K. Kunen and J.E. Vaughan, Elsevier Science Publishers, B.V., North Holland, 1984, 347-422.
MR 0776628 |
Zbl 0569.54022
[3] Gruenhage G.:
On closed images of orthocompact spaces. Proc. Amer. Math. Soc. 77 (1979), 389-394.
MR 0545602 |
Zbl 0422.54013
[4] Klee V.:
Stability of the fixed point theory. Colloq. Math. 8 (1961), 43-46.
MR 0126261
[5] Muenzenberger T.B.:
On the proximate fixed point property for multifunctions. Colloq. Math. 19 (1968), 245-250.
MR 0227968 |
Zbl 0181.26203
[6] Schirmer H.:
$\delta $-continuous selections of small multifunctions. Can. J. Math. XXIV, (4) (1972), 631-635.
MR 0300255 |
Zbl 0219.54012
[7] Smithson R.E.:
A note on $\delta $-continuity and proximate fixed points for multi-valued functions. Proc Amer. Math. Soc. 23 (1969), 256-260.
MR 0248774 |
Zbl 0183.27703