[1] Groot J. de, McDowell R.H.:
Autohomeomorphism groups of 0-dimensional spaces. Compositio Math. 15 (1963), 203-209.
MR 0154267
[3] Iturrioz L.:
A representation theory for orthomodular lattices by means of closure spaces. Acta Math. Hung. 47 (1986), 145-151.
MR 0836405 |
Zbl 0608.06008
[4] Kallus M., Trnková V.:
Symmetries and retracts of quantum logics. Int. J. Theor. Phys. 26 (1987), 1-9.
MR 0890206
[6] Kalmbach G.:
Automorphism groups of orthomodular lattices. Bull. Austral. Math. Soc. 29 (1984), 309-313.
MR 0748724 |
Zbl 0538.06009
[7] Navara M.: The independence of automorphism groups, centres and state spaces in quantum logics. to appear.
[8] Navara M.: An alternative proof of Shultz's theorem. to appear.
[9] Navara M., Pták P.:
Almost Boolean orthomodular posets. J. Pure Appl. Algebra 60 (1989), 105-111.
MR 1014608
[10] Navara M., Rogalewicz V.:
The pasting constructions for orthomodular posets. to appear in Math. Nachrichten.
MR 1138377 |
Zbl 0767.06009
[11] Pták P.:
Logics with given centres and state spaces. Proc. Amer. Math. Soc. 88 (1983), 106-109.
MR 0691287
[12] Pták P., Pulmannová S.:
Orthomodular Structures as Quantum Logics. Kluwer, 1991 (to appear).
MR 1176314
[13] Pultr A., Trnková V.:
Combinatorial, Algebraic and Topological Representations of Groups, Semigroups and Categories. North-Holland, Amsterdam, 1980 and Academia, Praha, 1980.
MR 0563525
[15] Tkadlec J.:
Set representations of orthoposets. Proc. 2-nd Winter School on Measure Theory (Liptovský Ján, 1990), Slovak Academy of Sciences, Bratislava, 1990.
MR 1118430 |
Zbl 0777.06009
[16] Zierler N., Schlessinger M.:
Boolean embeddings of orthomodular sets and quantum logic. Duke Math. J. 32 (1965), 251-262.
MR 0175520