Previous |  Up |  Next

Article

Keywords:
$n$-quasigroup; medial
Summary:
For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.
References:
[1] Bénéteau L.: Free commutative Moufang loops and anticommutative graded rings. J. Algebra 67 (1980), 1-35. MR 0595016
[2] Bénéteau L.: Une classe particulière de matroïdes parfaits. Annals of Discr. Math. 8 (1980), 229-232. MR 0597178
[3] Bénéteau L., Kepka t., Lacaze J.: Small finite trimedial quasigroups. Commun. Algebra 14 (1986), 1067-1090. MR 0837271
[4] Bol G.: Gewebe und Gruppen. Math. Ann. 114 (1937), 414-431. MR 1513147 | Zbl 0016.22603
[5] Deza M., Hamada N.: The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme. Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.
[6] Evans T.: Abstract mean values. Duke Math. J. 30 (1963), 331-347. MR 0155781 | Zbl 0118.26304
[7] Kepka T.: Structure of triabelian quasigroups. Comment. Math. Univ. Carolinae 17 (1976), 229-240. MR 0407182 | Zbl 0338.20097
Partner of
EuDML logo