Article
Keywords:
$n$-quasigroup; medial
Summary:
For $n\geq 4$, every $n$-medial $n$-quasigroup is medial. If $1\leq m<n$, then there exist $m$-medial $n$-quasigroups which are not $(m+1)$-medial.
References:
[1] Bénéteau L.:
Free commutative Moufang loops and anticommutative graded rings. J. Algebra 67 (1980), 1-35.
MR 0595016
[2] Bénéteau L.:
Une classe particulière de matroïdes parfaits. Annals of Discr. Math. 8 (1980), 229-232.
MR 0597178
[3] Bénéteau L., Kepka t., Lacaze J.:
Small finite trimedial quasigroups. Commun. Algebra 14 (1986), 1067-1090.
MR 0837271
[5] Deza M., Hamada N.: The geometric structure of a matroid design derived from some commutative Moufang loops and a new MDPB association scheme. Techn. report nr. 18, Statistic Research group, Hiroshima Univ., 1980.
[7] Kepka T.:
Structure of triabelian quasigroups. Comment. Math. Univ. Carolinae 17 (1976), 229-240.
MR 0407182 |
Zbl 0338.20097