Previous |  Up |  Next

Article

Keywords:
oscillation; property(A); delay argument
Summary:
The aim of this paper is to study asymptotic properties of the solutions of the third order delay differential equation \[ \Big (\frac{1}{r(t)}\,y^{\prime }(t)\Big )^{\prime \prime }-p(t)\,y^{\prime }(t)+g(t)\,y\big (\tau (t)\big )= 0\,.\ast \] Using suitable comparison theorem we study properties of Eq. () with help of the oscillation of the second order differential equation.
References:
[1] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.: On nonoscillatory solutions of third order nonlinear differential equations . Dyn. Syst. Appl. 9 (2000), 483–500. MR 1843694
[2] Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill Book Company, New York-London, 1953. MR 0061235 | Zbl 0053.24705
[3] Cecchi, M., Došlá, Z., Marini, M.: On the third order differential equations with property A and B. J. Math. Anal. Appl. 231 (1999), 509–525. DOI 10.1006/jmaa.1998.6247 | MR 1669163
[4] Cecchi, M., Marini, M., Villari, G.: On the monotonicity property for a certain class of second order differential equations. J. Differential Equations 82 (1989), 15–27. DOI 10.1016/0022-0396(89)90165-4 | MR 1023299 | Zbl 0694.34035
[5] Chanturia, T. A., Kiguradze, I. T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Nauka, Moscow, 1990, in Russian.
[6] Džurina, J.: Asymptotic properties of the third order delay differential equations. Nonlinear Analysis 26 (1996), 33–39. DOI 10.1016/0362-546X(94)00239-E | MR 1354789
[7] Džurina, J.: Comparison theorems for functional differential equations. EDIS Žilina, 2002.
[8] Džurina, J.: Comparison theorems for nonlinear ODE’s. Math. Slovaca 1992 (42), 299–315. MR 1182960
[9] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation. Pacific J. Math. 1976 (64), 369–385. MR 0435508
[10] Hartman, P.: Ordinary Differential Equations. John Wiley & Sons, New York - London - Sydney, 1964. MR 0171038 | Zbl 0125.32102
[11] Jones, G. D.: An asymptotic property of solutions $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)$ $y=0$. Pacific J. Math. 47 (1973), 135–138. MR 0326065
[12] Kiguradze, I. T.: On the oscillation of solutions of the equation $\frac{d^mu}{dt^m} +a(t)|u|^n sign\,u = 0$. Mat. Sb. 65 (1964), 172–187, in Russian. MR 0173060 | Zbl 0135.14302
[13] Kusano, T., Naito, M.: Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Japan 3 (1981), 509–532. DOI 10.2969/jmsj/03330509 | MR 0620288 | Zbl 0494.34049
[14] Kusano, T., Naito, M., Tanaka, K.: Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations. Proc. Roy. Soc. Edinburg 90 (1981), 25–40. MR 0636062
[15] Lacková, D.: The asymptotic properties of the solutions of $n$-th order neutral differential equations. Arch. Math. (Brno) 39 (2003), 179–185.
[16] Lazer, A. C.: The behavior of solutions of the differential equation $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)\,y=0$. Pacific J. Math. 17 (1966), 435–466. DOI 10.2140/pjm.1966.17.435 | MR 0193332 | Zbl 0143.31501
[17] Mahfoud, W. E.: Comparison theorems for delay differential equations. Pacific J. Math. 83 (1979), 187–197. DOI 10.2140/pjm.1979.83.187 | MR 0555047 | Zbl 0441.34053
[18] Parhi, N., Padhi, S.: On asymptotic behaviour of delay differential equations of third order. Nonlinear Anal. 34 (1998), 391–403. DOI 10.1016/S0362-546X(97)00600-7 | MR 1635717
[19] Skerlík, A.: Integral criteria of oscillation for the third order linear differential equations. Math. Slovaca 45 (1995), 403–412. MR 1387057
[20] Trench, W. F.: Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math. Soc. 189 (1974), 319–327. DOI 10.1090/S0002-9947-1974-0330632-X | MR 0330632 | Zbl 0289.34051
[21] Trench, W. F.: Eventual disconjugacy of linear differential equation. Proc. Amer. Math. Soc. 83 (1983), 461–466. DOI 10.1090/S0002-9939-1983-0715867-7 | MR 0715867
Partner of
EuDML logo