[1] Bartušek, M., Cecchi, M., Došlá, Z., Marini, M.:
On nonoscillatory solutions of third order nonlinear differential equations . Dyn. Syst. Appl. 9 (2000), 483–500.
MR 1843694
[2] Bellman, R.:
Stability Theory of Differential Equations. McGraw-Hill Book Company, New York-London, 1953.
MR 0061235 |
Zbl 0053.24705
[3] Cecchi, M., Došlá, Z., Marini, M.:
On the third order differential equations with property A and B. J. Math. Anal. Appl. 231 (1999), 509–525.
DOI 10.1006/jmaa.1998.6247 |
MR 1669163
[5] Chanturia, T. A., Kiguradze, I. T.: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Nauka, Moscow, 1990, in Russian.
[7] Džurina, J.: Comparison theorems for functional differential equations. EDIS Žilina, 2002.
[8] Džurina, J.:
Comparison theorems for nonlinear ODE’s. Math. Slovaca 1992 (42), 299–315.
MR 1182960
[9] Erbe, L.:
Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equation. Pacific J. Math. 1976 (64), 369–385.
MR 0435508
[10] Hartman, P.:
Ordinary Differential Equations. John Wiley & Sons, New York - London - Sydney, 1964.
MR 0171038 |
Zbl 0125.32102
[11] Jones, G. D.:
An asymptotic property of solutions $y^{\prime \prime \prime }+p(x)y^{\prime }+q(x)$ $y=0$. Pacific J. Math. 47 (1973), 135–138.
MR 0326065
[12] Kiguradze, I. T.:
On the oscillation of solutions of the equation $\frac{d^mu}{dt^m} +a(t)|u|^n sign\,u = 0$. Mat. Sb. 65 (1964), 172–187, in Russian.
MR 0173060 |
Zbl 0135.14302
[14] Kusano, T., Naito, M., Tanaka, K.:
Oscillatory and asymptotic behavior of solutions of a class of linear ordinary differential equations. Proc. Roy. Soc. Edinburg 90 (1981), 25–40.
MR 0636062
[15] Lacková, D.: The asymptotic properties of the solutions of $n$-th order neutral differential equations. Arch. Math. (Brno) 39 (2003), 179–185.
[19] Skerlík, A.:
Integral criteria of oscillation for the third order linear differential equations. Math. Slovaca 45 (1995), 403–412.
MR 1387057