[1] Abbassi, M. T. K.:
Note on the classification theorems of $g$-natural metrics on the tangent bundle of a Riemannian manifolds $(M,g)$. Comment. Math. Univ. Carolin. 45 (2004), 591–596.
MR 2103077
[3] Cordero, L. A., de León, M.:
On the curvature of the induced Riemannian metric on the frame bundle of a Riemannian manifold. J. Math. Pures Appl. 65 (1986), 81–91.
MR 0844241
[4] Cordero, L. A., Dodson, C. T. J., de León, M.:
Differential Geometry of Frame Bundles. Mathematics and its Applications, Kluwer Academic Publishers Group, Dordrecht, 1989.
MR 0980716
[6] Kolář, I., Michor, P. W., Slovák, J.:
Natural Operations in Differential Geometry. Springer-Verlag, Berlin-Heidelberg-New York, 1993.
MR 1202431
[7] Kowalski, O., Sekizawa, M.:
Invariance of $g$-natural metrics on tangent bundles. to appear in Proceedings of 10th International Conference on Differential Geometry and Its Applications, World Scientific.
MR 2462791
[8] Kowalski, O., Sekizawa, M.:
On the geometry of orthonormal frame bundles. to appear in Math. Nachr.
MR 2473330 |
Zbl 1158.53015
[9] Kowalski, O., Sekizawa, M.:
On the geometry of orthonormal frame bundles II. to appear in Ann. Global Anal. Geom.
MR 2395192 |
Zbl 1141.53023
[10] Kowalski, O., Sekizawa, M.:
Natural transformations of Riemannian metrics on manifolds to metrics on linear frame bundles—a classification. Differential Geometry and its Applications, Proceeding of the Conference, August 24–30, 1986, Brno, Czechoslovakia, D. Reidel Publ. Comp., pp. 149-178, 1987.
MR 0923348 |
Zbl 0632.53040
[11] Kowalski, O., Sekizawa, M.:
On curvatures of linear frame bundles with naturally lifted metrics. Rend. Sem. Mat. Univ. Politec. Torino 63 (2005), 283–295.
MR 2202049 |
Zbl 1141.53020
[12] Krupka, D.:
Elementary theory of differential invariants. Arch. Math. (Brno) 4 (1978), 207–214.
MR 0512763 |
Zbl 0428.58002
[13] Krupka, D.: Differential invariants. Lecture Notes, Faculty of Science, Purkyně University, Brno (1979).
[14] Krupka, D., Janyška, J.:
Lectures on Differential Invariants. University J. E. Purkyně in Brno, 1990.
MR 1108622
[15] Krupka, D., V. Mikolášová, :
On the uniqueness of some differential invariants: $d$, [ , ], $\nabla $. Czechoslovak Math. J. 34 (1984), 588–597.
MR 0764440
[16] Mok, K. P.:
On the differential geometry of frame bundles of Riemannian manifolds. J. Reine Angew. Math. 302 (1978), 16–31.
MR 0511689 |
Zbl 0378.53016
[18] Zou, X.:
A new type of homogeneous spaces and the Einstein metrics on $O(n+1)$. Nanjing Univ. J. Math. Biquarterly 23 (2006), 70–78.
MR 2245416 |
Zbl 1192.53055