Previous |  Up |  Next

Article

Keywords:
Bass numbers; injective dimension; zero dimensional rings
Summary:
Let $(R,\mathfrak {m})$ be a commutative Noetherian local ring. We establish some bounds for the sequence of Bass numbers and their dual for a finitely generated $R$-module.
References:
[1] Avramov L. L.: Sur la croissance des nombres de Betti d’un anneau local. C. R. Acad. Sci. Paris 289 (1979), 369–372. MR 0554947 | Zbl 0425.13009
[2] Bass H.: On the ubiquity of Gorenstein rings. Math. Z. 82 (1963), 8–28. MR 0153708 | Zbl 0112.26604
[3] Bican L., El Bashir R., Enochs E. E.: All modules have flat covers. Bull. London Math. Soc. 33 (2001), 385–390. MR 1832549 | Zbl 1029.16002
[4] Enochs E. E.: Flat covers and flat cotorsion modules. Proc. Amer. Math. Soc. 92 (1984), 179–184. MR 0754698 | Zbl 0522.13008
[5] Enochs E. E., Jenda O. M. G.: Relative homological algebra. de Gruyter Expositions in Mathematics, 30. Walter de Gruyter & Co., Berlin, 2000. MR 1753146
[6] Enochs E. E., Xu J. Z.: On invariants dual to the Bass numbers. Proc. Amer. Math. Soc. 125 (1997), 951–960. MR 1363457 | Zbl 0868.13011
[7] Fossum R., Foxby H.-B., Griffith P., Reiten I.: Minimal injective resolutions with applications to dualizing modules and Gorenstein modules. Inst. Hautes Études Sci. Publ. Math. 45 (1975), 193–215. MR 0396529 | Zbl 0321.13013
[8] Foxby H.-B.: On the $\mu ^{i}$ in a minimal injective resolution. Math. Scand. 29 (1971), 175–186. MR 0309919
[9] Gulliksen T.: A proof of the existence of minimal R-algebra resolutions. Acta Math. 120 (1968), 53–58. MR 0224607 | Zbl 0157.34603
[10] Ramras M.: Bounds on Betti numbers. Canad. J. Math. 34 (1982), 589–592. MR 0663305 | Zbl 0512.13008
[11] Roberts P.: Two applications of dualizing complexes over local rings. Ann. Sci. École Norm. Sup. (4) 9 (1), (1976), 103–106. MR 0399075 | Zbl 0326.13004
[12] Roberts P.: Rings of type 1 are Gorenstein. Bull. London Math. Soc. 15 (1983), 48–50. MR 0686348 | Zbl 0487.13008
[13] Xu J. Z.: Minimal injective and flat resolutions of modules over Gorenstein rings. J. Algebra 175 (1995), 451–477. MR 1339651 | Zbl 0827.13005
Partner of
EuDML logo