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BOUNDS ON BASS NUMBERS AND THEIR DUAL

Abolfazl Tehranian and Siamak Yassemi

Abstract. Let (R, m) be a commutative Noetherian local ring. We establish
some bounds for the sequence of Bass numbers and their dual for a finitely
generated R-module.

Introduction

Throughout this paper, (R, m, k) is a non-trivial commutative Noetherian local
ring with unique maximal ideal m and residue field k. Several authors have ob-
tained results on the growth of the sequence of Betti numbers {βn(k)} (e.g., see
[9] and [1]). In [10] Ramras gives some bounds for the sequence {βn(M)} when
M is a finitely generated non-free R-module. In this paper, we seek to give some
bounds for the sequence of Bass numbers.

For a finitely generated R-module M , let

0 → M → E0 → E1 → · · · → Ei → · · ·

be a minimal injective resolution of M . Then, µi(M) denotes the number of
indecomposable components of Ei isomorphic to the injective envelope E(k) and is
called Bass number of M . This is a dual notion of Betti number. For a prime ideal
p, µi(p, M) denotes the number of indecomposable components of Ei isomorphic
to the injective envelope E(R/p). It is known that µi(M) is finite and is equal
to the dimension of Ext i

R
(R/m, M) considered as a vector space over R/m (note

that µi(p, M) = µi(Mp)). These numbers play important role in understanding
the injective resolution of M , and are the subject of further work. For example,
the ring R of dimension d is Gorenstein if and only if R is Cohen-Macaulay and
the dth Bass number µd(R) is 1. This was proved by Bass in [2]. Vasconcelos
conjectured that one could delete the hypothesis that R be Cohen-Macaulay. This
was proved by Paul Roberts in [12].

For a finitely generated R-module M , it turns out that the least i for which
µi(M) > 0 is the depth of M , while the largest i with µi(M) > 0 is the injective
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dimension inj.dim RM of M (which might be infinite), cf. [2] and [8]. In [8] Foxby
asked the question: Is µi(M) > 0 for all i with depth RM ≤ i ≤ inj.dim RM? In
[7], Fossum, Foxby, Griffith, and Reiten answered this question in the affirmative
(see also [11]).

A homomorphism ϕ : F → M with a flat R-module F is called a flat precover
of the R-module M provided Hom R(G, F ) → Hom R(G, M) → 0 is exact for
all flat R-modules G. If in addition any homomorphism f : F → F such that
fϕ = ϕ is an automorphism of F , then ϕ : F → M is called a flat cover of
M . A minimal flat resolution of M is an exact sequence · · · → Fi → Fi−1 →
· · · → F0 → M → 0 such that Fi is a flat cover of Im(Fi → Fi−1) for all i > 0.
A module C is called cotorsion if Ext 1

R
(F, C) = 0 for any flat R-module F . A

flat cover of a cotorsion module is cotorsion and flat, and the kernel of a flat cover
is cotorsion. In [4], Enochs showed that a flat cotorsion module F is uniquely
a product

∏

Tp, where Tp is the completion of a free Rp-module, p ∈ Spec R.
Therefore, for i > 0 he defined πi(p, M) to be the cardinality of a basis of a free
Rp-module whose completion is Tp in the product Fi =

∏

Tp. For i = 0 define
π0(p, M) similarly by using the pure injective envelope of F0. In some sense these
invariants are dual to the Bass numbers. In [6], Enochs and Xu proved that for
a cotorsion R-module M which possesses a minimal flat resolution, πi(p, M) =
dim k(p) Tor R

i

(

k(p), Hom R(Rp, M)
)

. Here k(p) denotes the quotient field of R/p.
Note that in [3] the authors show that every module has a flat cover, see also [13]
and [5].

In this paper, we study the sequence of Bass numbers µi(p, M) and its dual
πi(p, M). Among the other things we establish the following bounds:

(1) µ2(M)/µ1(M) ≤ ℓ(R) and µn+1(M)/µn(M) < ℓ(R) for any n ≥ 2,

(2) µn(M)/µn+1(M) < ℓ(R)/ℓ
(

Soc (R)
)

for any n ≥ 1,

where ℓ(∗) refers to the length of ∗.

1. Main results

The following lemma is the key to our main result.

Lemma 1.1. Let p be a prime ideal of R and let L be an Rp-module of finite

length. Then the following hold:

(a) For any module M and any non-negative integer n,

ℓ
(

Ext n+1
Rp

(L, M)
)

− ℓ
(

Ext n

Rp
(L, M)

)

≥ µn+1(p, M) − ℓ(L)µn(p, M) .

(b) For any cotorsion R-module M and any non-negative integer n,

ℓ
(

Tor
Rp

n+1(L, M)
)

− ℓ
(

Tor Rp

n
(L, M)

)

≥ πn+1(p, M) − ℓ(L)πn(p, M) .

Proof. (a) We proceed by induction on s = ℓ(L). If s = 1, then L ∼= k(p), and

ℓ
(

Ext n+1
Rp

(k(p), M)
)

− ℓ
(

Ext n

Rp
(k(p), M)

)

= µn+1(p, M) − µn(p, M) .

Now assume that s > 1. Then there is a submodule K of L with ℓ(K) = s − 1
such that the sequence 0 → k(p) → L → K → 0 is exact. The corresponding long
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exact sequence for Ext Rp
(−, M) gives the exact sequence

Ext n

Rp
(K, M) → Ext n

Rp
(L, M) → Ext n

Rp
(k(p), M)

→ Ext n+1
Rp

(K, M) → Ext n+1
Rp

(L, M) .

It follows that

ℓ
(

Ext n+1
Rp

(L, M)
)

− ℓ
(

Ext n

Rp
(L, M)

)

≥ ℓ
(

Ext n+1
Rp

(K, M)
)

− ℓ
(

Ext n

Rp
(K, M)

)

− µn(p, M)

≥ µn+1(p, M) − ℓ(K)µn(p, M) − µn(p, M)

= µn+1(p, M) − ℓ(L)µn(p, M) ,

where the first inequality follows from the property of length and the equality
Ext n

Rp
(k(p), M) = µn(p, M), also the second inequality follows by the induction

hypothesis.
(b) We proceed by induction on s = ℓ(L). If s = 1, then L ∼= k(p), and we have

ℓ
(

Tor
Rp

n+1(k(p), M)
)

− ℓ
(

Tor Rp

n (k(p), M)
)

= πn+1(p, M) − ℓ(L)πn(p, M) .

Now assume that s > 1. Then there is an Rp- submodule K of L with ℓ(K) =
s − 1 such that the sequence 0 → k(p) → L → K → 0 is exact. Set N =
Hom R(Rp, M). The corresponding long exact sequence for Tor Rp(−, N) leads to
the exact sequence

Tor
Rp

n+1(L, N) → Tor
Rp

n+1(K, N) → Tor Rp

n (k(p), N)

→ Tor Rp

n (L, N) → Tor Rp

n (K, N) .

It follows that

ℓ
(

Tor
Rp

n+1(L, N)
)

− ℓ
(

Tor Rp

n (L, N)
)

≥ ℓ
(

Tor
Rp

n+1(K, N)
)

− ℓ
(

Tor Rp

n
(K, N)

)

− πn(M)

≥ πn+1(M) − ℓ(K)πn(M) − πn(M)

= πn+1(M) − ℓ(L)πn(M) ,

where the second inequality follows by the induction hypothesis.

Corollary 1.2. Let R be a zero dimensional ring and let M be an R-module. For

any prime ideal p and any integer n ≥ 1 the following hold:

(a)

µn+1(p, M) ≤ ℓ(Rp)µ
n(p, M) .

(b) If M is a cotorsion R-module, then

πn+1(p, M) ≤ ℓ(Rp)πn(p, M) .

Proof. (a) Replace the module L in Lemma 1.1(a) with Rp and note that
Ext i

Rp
(Rp,−) = 0 for all i ≥ 1.

(b) Replace the module L in Lemma 1.1(b) with Rp and note that Tor
Rp

i
(Rp,−)

= 0 for any i ≥ 1.
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Proposition 1.3. Let R be a zero dimensional ring. Then the following hold:

(a) Let M be an R-module. For any integer n ≥ 1 and prime ideal p,

µn+1(p, M) ≤ ℓ(Rp)µ
n(p, M) .

(b) Let M be a cotorsion R-module. For any p ∈ Spec R and any n ≥ 2,

πn+1(p, M) + ℓ
(

Soc (R)
)

πn−1(p, M) ≤ ℓ(Rp)πn(p, M) .

Proof. (a) It is clear from Lemma 1.1(a).
(b) Assume that p ∈ Spec R and set I = Soc (Rp), N = Hom R(Rp, M). From

the exact sequence
0 → I → Rp → Rp/I → 0 ,

it follows that for any n ≥ 1,

Tor
Rp

n+1(Rp/I, N) ∼= Tor R

n (I, N) ∼= ⊕Tor R

n (Rp/pRp, N) ,

where the numbers of copies in the direct sum is ℓ(I). Hence

ℓ
(

Tor
Rp

n+1(Rp/I, N)
)

= ℓ(I)πn(p, M) for n ≥ 1 .

Thus, by Lemma 1.1(b), for n ≥ 2,

ℓ(I)
(

πn(p, M) − πn−1(p, M)
)

≥ πn+1(p, M) − ℓ(Rp/I)πn(p, M) .

Therefore, ℓ(I)πn−1(p, M) + πn+1(p, M) ≤ ℓ(Rp)πn(M).

Theorem 1.4. Let R be a zero dimensional local ring. For any finitely generated

non-injective R-module M the following hold:

(1) µn+1(M)/µn(M) < ℓ(R) for any n ≥ 2,

(2) µn(M)/µn+1(M) < ℓ(R)/ℓ
(

Soc (R)
)

for any n ≥ 1.

Proof. Let I = Soc (R). From the exact sequence

0 → I → R → R/I → 0 ,

it follows that for any n ≥ 1,

Ext n+1
R

(R/I, M) ∼= Ext n

R(I, M) ∼= ⊕Ext n

R(R/m, M) ,

where the numbers of copies in the direct sum is ℓ(I). Hence

ℓ
(

Ext n+1
R

(R/I, M)
)

= ℓ(I)µn(M) for n ≥ 1 .

Thus, by Lemma 1.1, for n ≥ 2,

ℓ(I)
(

µn(M) − µn−1(M)
)

≥ µn+1(M) − ℓ(R/I)µn(M) .

Therefore, ℓ(I)µn−1(M)+µn+1(M) ≤ ℓ(R)µn(M). By [7, Theorem 1.1], µi(M) >
0 for depth RM ≤ i ≤ inj.dim RM . Since R is Artinian, depth RM = 0. Thus for
any n, n ≥ 2, µn(M) and µn−1(M) are positive integer and hence µn+1(M)/µn(M)
< ℓ(R). Moreover, if 2 ≤ n, then µn(M) and µn+1(M) are positive integers and
thus µn−1(M)/µn(M) < ℓ(R)/ℓ

(

Soc (R)
)

.

Corollary 1.5. Let R be a zero dimensional ring. Let M be a finitely generated

R-module. For any prime ideal p with Mp non-injective Rp-module, the following

hold:
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(1) µn+1(p, M)/µn(p, M) < ℓ(Rp) for any n ≥ 2,

(2) µn(p, M)/µn+1(p, M) < ℓ(Rp)/ℓ
(

Soc (Rp)
)

for any n ≥ 1.

Remark 1.6. To the best of the knowledge of the authors, there is no condition
(yet!) which implies that πn(p, M) > 0. This is the reason that we could not give
a similar result as Theorem 1.4 for the dual notion of Bass numbers.
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