Previous |  Up |  Next

Article

Keywords:
half-linear equation; principal solution; limit characterization; integral characterization
Summary:
Some asymptotic properties of principal solutions of the half-linear differential equation \[ (a(t)\Phi (x^{\prime }))^{\prime }+b(t)\Phi (x)=0\,, \qquad \mathrm {(*)}\] $\Phi (u)=|u|^{p-2}u$, $p>1$, is the $p$-Laplacian operator, are considered. It is shown that principal solutions of (*) are, roughly speaking, the smallest solutions in a neighborhood of infinity, like in the linear case. Some integral characterizations of principal solutions of (), which completes previous results, are presented as well.
References:
[1] Agarwal R. P., Grace S. R., O’Regan D.: Oscillation Theory for Second Order Linear, Half-linear, Superlinear and Sublinear Dynamic Equations. Kluwer Acad. Publ., Dordrecht, The Netherlands, 2002. MR 2091751 | Zbl 1073.34002
[2] Cecchi M., Došlá Z., Marini M.: On nonoscillatory solutions of differential equations with $p$-Laplacian. Adv. Math. Sci. Appl. 11 1 (2001), 419–436. MR 1842385 | Zbl 0996.34039
[3] Cecchi M., Došlá Z., Marini M.: Half-linear equations and characteristic properties of the principal solution. J. Differential Equ. 208, 2005, 494-507; Corrigendum, J. Differential Equations 221 (2006), 272–274. MR 2109564
[4] Cecchi M., Došlá Z., Marini M.: Half-linear differential equations with oscillating coefficient. Differential Integral Equations 18 11 (2005), 1243–1256. MR 2174819 | Zbl 1212.34144
[5] Cecchi M., Došlá Z., Marini M., Vrkoč I.: Integral conditions for nonoscillation of second order nonlinear differential equations. Nonlinear Anal. 64 (2006), 1278–1289. MR 2200492 | Zbl 1114.34031
[6] Došlá Z., Vrkoč I.: On extension of the Fubini theorem and its application to the second order differential equations. Nonlinear Anal. 57 (2004), 531–548. MR 2062993
[7] Došlý O., Elbert Á.: Integral characterization of the principal solution of half-linear second order differential equations. Studia Sci. Math. Hungar. 36 (2000), 455–469. MR 1798750
[8] Došlý O., Řehák P.: Half-linear Differential Equations. North-Holland, Mathematics Studies 202, Elsevier, Amsterdam, 2005. MR 2158903 | Zbl 1090.34001
[9] Došlý O., Řezníčková J.: Regular half-linear second order differential equations. Arch. Math. (Brno) 39 (2003), 233–245. MR 2010724 | Zbl 1119.34029
[10] Elbert Á.: On the half-linear second order differential equations. Acta Math. Hungar. 49 (1987), 487–508. MR 0891061 | Zbl 0656.34008
[11] Elbert Á., Kusano T.: Principal solutions of non-oscillatory half-linear differential equations. Adv. Math. Sci. Appl. 8 2 (1998), 745–759. MR 1657164 | Zbl 0914.34031
[12] Fan X., Li W. T., Zhong C.: A classification scheme for positive solutions of second order iterative differential equations. Electron. J. Differential Equations 25 (2000), 1–14.
[13] Hartman P.: Ordinary Differential Equations. 2nd ed., Birkhäuser, Boston–Basel–Stuttgart, 1982. MR 0658490 | Zbl 0476.34002
[14] Hoshino H., Imabayashi R., Kusano T., Tanigawa T.: On second-order half-linear oscillations. Adv. Math. Sci. Appl. 8 1 (1998), 199–216. MR 1623342 | Zbl 0898.34036
[15] Jaroš J., Kusano T., Tanigawa T.: Nonoscillation theory for second order half-linear differential equations in the framework of regular variation. Results Math. 43 (2003), 129–149. MR 1962855 | Zbl 1047.34034
[16] Jingfa W.: On second order quasilinear oscillations. Funkcial. Ekvac. 41 (1998), 25–54. MR 1627369 | Zbl 1140.34356
[17] Mirzov J. D.: Asymptotic Properties of Solutions of the Systems of Nonlinear Nonautonomous Ordinary Differential Equations. (Russian), Maikop, Adygeja Publ., 1993; the english version: Folia Fac. Sci. Natur. Univ. Masaryk. Brun. Math. 14 2004. MR 2144761
Partner of
EuDML logo