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LIMIT AND INTEGRAL PROPERTIES OF PRINCIPAL

SOLUTIONS FOR HALF-LINEAR DIFFERENTIAL EQUATIONS

Mariella Cecchi, Zuzana Došlá and Mauro Marini

Abstract. Some asymptotic properties of principal solutions of the half-
linear differential equation

(*) (a(t)Φ(x′))′ + b(t)Φ(x) = 0 ,

Φ(u) = |u|p−2u, p > 1, is the p-Laplacian operator, are considered. It is
shown that principal solutions of (*) are, roughly speaking, the smallest so-
lutions in a neighborhood of infinity, like in the linear case. Some integral
characterizations of principal solutions of (1), which completes previous re-
sults, are presented as well.

1. Introduction

Consider the half-linear equation

(1)
(

a(t)Φ(x′)
)

′

+ b(t)Φ(x) = 0 ,

where the functions a, b are continuous and positive for t ≥ 0, and Φ(u) = |u|p−2u,
p > 1.

When (1) is nonoscillatory, the asymptotic behavior of its solutions has been
considered in many papers, see, e.g., [3, 4, 7, 9, 10, 11, 14, 15], the monographs
[1, 8, 17] and references therein.

In particular, when (1) is nonoscillatory, the concept of a principal solution has
been formulated for (1) in [11, 17], by extending the analogous one stated for the
linear equation

(2)
(

a(t)x′
)

′

+ b(t)x = 0 ,
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see, e.g., [13, Chapter 11]. More precisely, a nontrivial solution u of (1) is called a
principal solution of (1) if for every nontrivial solution x of (1) such that x 6= λu,
λ ∈ R, we have

(3)
u′(t)

u(t)
<

x′(t)

x(t)
for large t .

As in the linear case, the principal solution u exists and is unique up to a constant
factor. Any nontrivial solution x 6= λu is called nonprincipal solution. Denote

Ja =

∫

∞

0

dt

Φ∗

(

a(t)
) , Jb =

∫

∞

0

b(t) dt ,

where Φ∗ is the inverse of the map Φ, i.e. Φ∗(u) = |u|p
∗

−2u, p∗ = p/(p − 1).
The question concerning limit and integral characterizations of principal solu-

tions, like in the linear case, has been posed in [7] and partially solved in [3] under
any of the following assumptions

(4)
i) Ja = ∞ , p ≥ 2 , ii) Jb = ∞ , 1 < p ≤ 2 ,

iii) Ja + Jb < ∞ .

In this paper we continue such a study, by assuming

(5) Ja + Jb = ∞ .

We will characterize principal solutions of (1) by means of some limit or integral
properties, which extend our quoted results in [3].

The paper is organized as follows. In Section 2 some preliminary results, con-
cerning the classification of solutions of (1), are given. In Section 3 principal
solutions of (1) are characterized by showing that they are, roughly speaking,
the smallest solutions in a neighborhood of infinity, like in the linear case. Some
integral characterizations of principal solutions of (1) are presented in Section 4,
completing in such a way our previous results in [3]. Some open problems complete
the paper.

2. Preliminaries

We start this section by recalling some basic results, which will be useful in the
sequel.

It is easy to verify that the quasi-derivative y = x[1] of any solution x of (1),
where x[1](t) = a(t)Φ

(

x′(t)
)

, is a solution of the so-called reciprocal equation

(6)
(

Φ∗

( 1

b(t)

)

Φ∗(y′)
)

′

+ Φ∗

( 1

a(t)

)

Φ∗(y) = 0 ,

which is obtained from (1) by interchanging the function a with Φ∗(1/b) and b
with Φ∗(1/a). Conversely, the quasiderivative y[1](t) = Φ∗ (1/b(t))Φ∗(y′(t)) of
any solution y of (6) is a solution of (1). Observe that Ja [Jb] for (1) plays the
same role as Jb [Ja] for (6) and vice versa.
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In view of positiveness of a and b, (1) and (6) have the same character with
respect to the oscillation, i.e. (1) is nonoscillatory if and only if (6) is nonoscillatory.
When Ja = Jb = ∞, then (1) is oscillatory (see, e.g., [8, Th.1.2.9.]). If either
Ja = ∞, Jb < ∞ or Ja < ∞, Jb = ∞, then both oscillation and nonoscillation can
occur (see, e.g., [8, §3.1]).

Principal solutions of (1) and (6) are related, as the following result, which can
be proved by using the same argument as in [3, Theorem 1], shows.

Proposition 1. Let (1) be nonoscillatory and assume (5). A solution u of (1) is
a principal solution if and only if v = u[1] is a principal solution of (6).

When (1) is nonoscillatory, taking into account that (6) is nonoscillatory too,
we have that any nontrivial solution x of (1) belongs to one of the following two
classes:

M
+ = {x solution of (1) : ∃tx ≥ 0 : x(t)x′(t) > 0 for t > tx}

M
− = {x solution of (1) : ∃tx ≥ 0 : x(t)x′(t) < 0 for t > tx}.

The following holds.

Proposition 2. Let (1) be nonoscillatory and assume (5). Let S be the set of
nontrivial solutions of (1). Then

Ja = ∞ ⇐⇒ S ≡ M
+ ; Jb = ∞ ⇐⇒ S ≡ M

− .

Moreover, (1) does not have solutions x such that

(7) lim
t→∞

x(t) = cx , lim
t→∞

x[1](t) = dx , 0 < |cx| < ∞ , 0 < |dx| < ∞ .

Proof. The first statement follows by using a similar argument as in [3, Lemma 1]
(see also [8, Lemmas 4.1.3, 4.1.4]). Now let us prove (7). Assume Ja = ∞ and let
x be a solution of (1) satisfying (7). Then x ∈ M

+ and, without loss of generality,
suppose x(t) > 0, x′(t) > 0 for large t. From x[1](t) = a(t)Φ(x′(t)) we obtain for
large t

(8) x′(t) ∼
1

Φ∗(a(t))
,

where the symbol g1(t) ∼ g2(t) means that g1(t)/g2(t) has a finite nonzero limit,
as t → ∞. From (8) we obtain that x is unbounded (as t → ∞), which is a
contradiction. The case Jb = ∞ can be treated by using a similar argument.

Notice that if the assumption (5) is not verified, then both statements in Propo-
sition 2 fail, as it follows, for instance, from [12, Theorem 3] and applying this result
to the reciprocal equation (6).
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In virtue of the positiveness of the functions a, b, and Proposition 2, both classes
M

+, M− can be divided, a-priori, into the following subclasses:

M
+
ℓ,0 =

{

x ∈ M
+ : lim

t→∞

x(t) = cx, lim
t→∞

x[1](t) = 0, 0 < |cx| < ∞
}

,

M
+
∞,0 =

{

x ∈ M
+ : lim

t→∞

|x(t)| = ∞, lim
t→∞

x[1](t) = 0
}

,

M
+
∞,ℓ =

{

x ∈ M
+ : lim

t→∞

|x(t)| = ∞, lim
t→∞

x[1](t) = dx, 0 < |dx| < ∞
}

,

M
−

0,ℓ =
{

x ∈ M
− : lim

t→∞

x(t) = 0, lim
t→∞

x[1](t) = dx, 0 < |dx| < ∞
}

,

M
−

0,∞ =
{

x ∈ M
− : lim

t→∞

x(t) = 0, lim
t→∞

|x[1](t)| = ∞
}

,

M
−

ℓ,∞ =
{

x ∈ M
− : lim

t→∞

x(t) = cx, lim
t→∞

|x[1](t)| = ∞, 0 < |cx| < ∞
}

.

The existence of solutions in these subclasses depends on the convergence or
divergence of the following integrals:

J1 = lim
T→∞

∫ T

0

Φ∗

( 1

a(t)

)

Φ∗

(

∫ t

0

b(s) ds
)

dt ,

J2 = lim
T→∞

∫ T

0

Φ∗

( 1

a(t)

)

Φ∗

(

∫ T

t

b(s) ds
)

dt ,

and

Y1 = lim
T→∞

∫ T

0

b(t)Φ
(

∫ T

t

Φ∗
( 1

a(s)

)

ds
)

dt ,

Y2 = lim
T→∞

∫ T

0

b(t)Φ
(

∫ t

0

Φ∗

( 1

a(s)

)

ds
)

dt .

Clearly, for the linear equation (2) we have J1 = Y1, J2 = Y2. Observe that the
integral J1 for (1) plays the same role as Y2 for (6) and vice versa; analogously J2

for (1) plays the same role as Y1 for (6) and vice versa.
The following holds.

Lemma A. Concerning the mutual behavior of J1, Y1, the only possible cases are
the following:

J1 = Y1 = ∞ for 1 < p
J1 = ∞, Y1 < ∞ for 2 < p
J1 < ∞, Y1 = ∞ for 1 < p < 2
J1 < ∞, Y1 < ∞ for 1 < p.

Analogously for J2, Y2, the only possible cases are

J2 = Y2 = ∞ for 1 < p
J2 = ∞, Y2 < ∞ for 2 < p
J2 < ∞, Y2 = ∞ for 1 < p < 2
J2 < ∞, Y2 < ∞ for 1 < p.

Moreover, if J2 + Y2 = ∞, then Ja = ∞, and, if J1 + Y1 = ∞, then Jb = ∞.
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Proof. The possible cases for Ji, Yi (i = 1, 2) follow from [6, Corollary 1 and
Examples 1, 2]. The relations between Ji, Yi and Ja, Jb follow from [2, Lemma
2].

The following holds.

Theorem A. i1) Assume Ja = ∞. Then

M
+
ℓ,0 6= ∅ ⇐⇒ J2 < ∞ , M

+
∞,ℓ 6= ∅ ⇐⇒ Y2 < ∞ .

i2) Assume Jb = ∞. Then

M
−

0,ℓ 6= ∅ ⇐⇒ Y1 < ∞ , M
−

ℓ,∞ 6= ∅ ⇐⇒ J1 < ∞ .

Proof. Claim i1) follows, for instance, from [14, Th.s 4.1 and 4.2 ] (see also [12,
Section 4], [16, Th. 4.3], in which a more general equation is considered). Claim
i2) follows by applying i1) to the reciprocal equation (6).

3. Limit characterization

When (1) is nonoscillatory, in [7] the question, whether principal solutions are
smallest solutions in a neighborhood of infinity also in the half-linear case, has been
posed. This problem has been solved in [3, Theorem 2] under any of assumptions
in (4).

To extend such a result, the following uniqueness result plays an important role.

Theorem B. Let η 6= 0 be a given constant.
i1) Assume Ja = ∞, J2 < ∞. Then there exists a unique solution x of (1) such

that x ∈ M
+ and limt→∞ x(t) = η.

i2) Assume Jb = ∞, Y1 < ∞. Then there exists a unique solution x of (1) such
that x ∈ M

− and limt→∞ x[1](t) = η.

Proof. Claim i1) follows from [14, Theorem 4.3] (see also [8, Theorem 4.1.7]).
Claim i2) follows by applying i1) to the reciprocal equation (6).

The following holds.

Theorem 1. Let u be a solution of (1) and assume either i1) Ja = ∞, J2 < ∞
or i2) Jb = ∞, Y1 < ∞. Then u is a principal solution if and only if for any
nontrivial solution x of (1) such that x 6= λu, λ ∈ R, we have

(9) lim
t→∞

u(t)

x(t)
= 0 .

Proof. If (9) holds for any nontrivial solution x of (1) such that x 6= λu, λ ∈ R,
then, by using the same argument as in [3, Theorem 2], u is a principal solution
of (1).

Conversely, suppose that u is a principal solution and let us show that (9) holds
for any nontrivial solution x of (1) such that x 6= λu, λ ∈ R if either i1) or i2)
holds.

Assume case i1). By Theorem A, we have M
+
ℓ,0 6= ∅ and so (1) is nonoscillatory.

Without loss of generality, suppose u eventually positive. We claim that u is
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bounded (as t → ∞). Assume that u is unbounded and consider x ∈ M
+
ℓ,0 such that

x is eventually positive. From (3), the ratio u/x is eventually positive decreasing,
which yields a contradiction because liml→∞[u(t)/x(t)] = ∞. Then u is bounded
and so u ∈ M

+
ℓ,0. For any nontrivial solution x of (1), such that x 6= λu, in view

of Theorem B, we obtain that x is unbounded and so (9) holds.
Now assume case i2). Again by Theorem A, we have M

−

0,ℓ 6= ∅ and so (1) is
nonoscillatory. Without loss of generality, suppose u and x eventually positive. In
view of Proposition 2, we have u[1](t) < 0, x[1](t) < 0 for large t. From (3), we
obtain for large t

(10)
u[1](t)

x[1](t)
> Φ

(u(t)

x(t)

)

> 0 .

Applying Proposition 1, u[1] is a principal solution of (6). Since for (6) the case
i1) holds, we obtain

lim
t→∞

u[1](t)

x[1](t)
= 0

and so, from (10), the assertion follows.

From Theorem B, Theorem 1 and Theorem 2 in [3], we obtain the following.

Corollary 1. The set of principal solutions of (1) is either M
+
ℓ,0 or M

−

0,ℓ according
to either Ja = ∞, J2 < ∞, or Jb = ∞, Y1 < ∞, respectively.

Remark 1. Summarizing Theorem 1 and [3, Theorem 2] (which holds under any
of assumptions in (4)), and taking into account Lemma A, we obtain that, if (1)
is nonoscillatory, then the limit characterization of principal solutions (9) holds in
any case except the following two cases

(11) J2 = Y2 = ∞ , 1 < p < 2 ; J1 = Y1 = ∞ , p > 2 .

When any of these cases occurs (and (1) is nonoscillatory), we conjecture that the
limit characterization (9) continues to hold, as the following example suggests.

Example 1. Consider the Euler type equation (t ≥ 1)

(12)
(

Φ(x′)
)

′

+
(γ

t

)p

Φ(x) = 0 ,

where γ = (p − 1)/p, 1 < p < 2. Obviously, Ja = J2 = ∞ and u(t) = tγ is a
solution of (12). Moreover, any nontrivial solution x 6= λu, λ ∈ R, satisfies

x(t) ∼ tγ(log t)2/p ,

and u(t) = tγ is a principal solution of (12) (see, e.g., [8, Example 4.2.1. iii)]).
Obviously, (9) is satisfied.

4. Integral characterizations

It is well-known, see e.g. [13, Ch. XI, Theorem 6.4], that, if the linear equa-
tion (2) is nonoscillatory, then principal solutions u of (2) can be equivalently
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characterized by one of the following conditions (in which x denotes an arbitrary
nontrivial solution of (2), linearly independent of u):

lim
t→∞

u(t)

x(t)
= 0;(π1)

u′(t)

u(t)
<

x′(t)

x(t)
for large t;(π2)

∫

∞ dt

a(t)u2(t)
= ∞.(π3)

The characterizations (π1), (π2) depend on all the solutions of (2). Even if this
is not a serious disadvantage in the linear case, because of the reduction of order
formula, the characterization (π3) seems prefereable, since it is, roughly speaking,
self-contained.

In this section we study the possible extensions of the integral characterization
(π3) to the half-linear case.

In [7] principal solutions u of (1) have been characterized by means of the
following integral

(13) Qu :=

∫

∞ u′(t)

u2(t)u[1](t)
dt.

In particular, when b may change its sign, the following holds.

Theorem C [7, Theorem 3.1]. Suppose that (1) is nonoscillatory and let 1 <
p ≤ 2. If x is a nonprincipal solution of (1), then Qx < ∞.

When b(t) > 0, such a result has been partially extended in [3] by the following
way.

Theorem D [3, Theorems 3, 4]. Let (1) be nonoscillatory and assume any of
conditions

i) Ja = ∞ , p ≥ 2 , ii) Jb = ∞ , 1 < p ≤ 2 .

A solution u of (1) is a principal solution if and only if Qu = ∞.

In addition in [3, Corrigendum] an example is given, illustrating that the char-
acterization (13) cannot be extended to the case Ja = ∞, 1 < p < 2, without any
additional assumptions.

Here we extend Theorems C, D by introducing a new integral characterization
of principal solutions. Consider the integral

(14) Ru :=

∫

∞ b(t)Φ(u(t))

u(t)(u[1](t))2
dt ,

which arises considering Qy, where y = u[1] is a solution of the reciprocal equation
(6). Concerning the characterization of nonprincipal solutions, the following result
extends Theorem C.



82 M. CECCHI, Z. DOŠLÁ AND M. MARINI

Theorem 2. Let (1) be nonoscillatory and assume (5). If x is a nonprincipal
solution of (1), then Qx < ∞ and Rx < ∞.

To prove this result, the following lemma is useful.

Lemma 1. Assume that (1) is nonoscillatory and (5) holds. If x is a nonprincipal
solution of (1), then

lim sup
t→∞

x(t)x[1](t) = ∞ or lim inf
t→∞

x(t)x[1](t) = −∞ ,

according to Ja = ∞ or Jb = ∞, respectively.

Proof. Let Ja = ∞. Assume that there exists a constant h > 0 such that for
large t

x(t)x[1](t) < h .

Because x is a nonprincipal solution, in view of Theorem A and Corollary 1, x is
unbounded. Then

Qx =

∫

∞ x′(t)

x2(t)x[1](t)
dt ≥

1

h

∫

∞ x′(t)

x(t)
dt = ∞ ,

which contradicts Theorem C or Theorem D, according to 1 < p ≤ 2 or p ≥ 2,
respectively.

Now let Jb = ∞. Consider the reciprocal equation (6): applying the first part of
the proof and using Proposition 1, we obtain lim supt→∞

y(t)y[1](t) = ∞ for any
nonprincipal solution y of (6). Because y(t)y[1](t) = −x(t)x[1](t), the assertion
follows.

Proof of Theorem 2. Taking into account Lemma 1 and using the identity

∫ t

T

x′(s)

x2(s)x[1](s)
ds =

1

x(T )x[1](T )
−

1

x(t)x[1](t)
+

∫ t

T

b(s)Φ(x(s))

x(s)(x[1](s))2
ds ,

we obtain

Qx =
1

x(T )x[1](T )
+ Rx

and so both integrals Qx, Rx have the same behavior. Thus, if 1 < p ≤ 2, the
assertion follows from Theorem C and if p > 2, the assertion follows applying
again Theorem C to the reciprocal equation (6).

Concerning principal solutions, the following holds.

Theorem 3. Let (1) be nonoscillatory and let u be a principal solution of (1).
i1) Assume Ja = ∞. In addition, when J2 = ∞, suppose p ≥ 2. Then Ru = ∞.
i2) Assume Jb = ∞. In addition, when Y1 = ∞, suppose 1 < p ≤ 2. Then

Qu = ∞.
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Proof. Claim i1). Since (1) is nonoscillatory, we have Jb < ∞ (see, e.g.,
[8, Theorem 1.2.9]). By Proposition 2 we have S ≡ M

+. Without loss of gen-
erality, assume u(t) > 0, u[1](t) > 0 for t ≥ T ≥ 0. We have

∫ t

T

u′(s)

u2(s)u[1](s)
ds =

1

u(T )u[1](T )
−

1

u(t)u[1](t)
+

∫ t

T

b(s)Φ(u(s))

u(s)(u[1](s))2
ds

<
1

u(T )u[1](T )
+

∫ t

T

b(s)Φ(u(s))

u(s)(u[1](s))2
ds .

Then

(15) Qu ≤
1

u(T )u[1](T )
+ Ru .

When p ≥ 2, from Theorem D we have Qu = ∞ and so (15) yields Ru = ∞.
Now let 1 < p < 2. By assumptions and Lemma A we have J2 < ∞ and so, in
view of Corollary 1, u ∈ M

+
ℓ,0. By using the l’Hospital rule, we have

(16) u[1](t) ∼

∫

∞

b(s)ds .

Thus, taking into account that Jb < ∞ we obtain

Ru ∼

∫

∞ b(t)

(u[1](t))2
dt =

∫

∞ b(t)
(∫

∞

t
b(s) ds

)2 dt = ∞.

Claim i2). The assertion follows by applying claim i1) to the reciprocal equation
(6) and using Proposition 1.

From Theorems 2, 3 we obtain the following.

Corollary 2. Let (1) be nonoscillatory and assume (5). In addition, when J2 =
∞, suppose p ≥ 2 and when Y1 = ∞, suppose 1 < p ≤ 2. A solution u of (1) is
a principal solution if and only if Qu + Ru = ∞.

Notice that, when Ja + Jb < ∞, the integral characterization (13) fails, as,
for instance, Example 2 in [3] shows. The same example illustrates that also the
integral characterization (14) fails.

We close this section by studying the behavior of integrals Qu, Ru, where u is
a principal solution of (1). The following holds.

Theorem 4. Let u be a principal solution of (1).
i1) Assume Ja = ∞, J2 < ∞. Then Qu = ∞ if and only if

(17)

∫

∞

0

( 1

a(t)

)1/(p−1)(
∫

∞

t

b(s) ds
)(2−p)/(p−1)

dt = ∞ .

i2) Assume Jb = ∞, Y1 < ∞. Then Ru = ∞ if and only if

(18)

∫

∞

b(t)
(

∫

∞

t

( 1

a(s)

)1/(p−1)

ds
)p−2

dt = ∞ .
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Proof. Without loss of generality, assume u(t) > 0 for large t.
Claim i1). Integrating (1) on (t,∞) and taking into account that, in view of

Corollary 1, u ∈ M
+
ℓ,0, (16) holds and so

u′(t)p−2
∼

( 1

a(t)

)(p−2)/(p−1)(
∫

∞

t

b(s) ds
)(p−2)/(p−1)

.

Thus

(19)
u′(t)

u[1](t)
=

1

a(t)

1

u′(t)p−2
∼

( 1

a(t)

)1/(p−1)(
∫

∞

t

b(s) ds
)(2−p)/(p−1)

,

from which the assertion follows.
Claim i2). Integrating the equality

u′(t) = Φ∗

(u[1](t)

a(t)

)

on (t,∞) and taking into account that, in view of Corollary 1, u ∈ M
−

0,ℓ, we have

u(t) ∼

∫

∞

t

Φ∗

( 1

a(s)

)

ds ,

and therefore

b(t)Φ(u(t))

u(t)
∼ b(t)

(

∫

∞

t

( 1

a(s)

)1/(p−1)

ds
)p−2

,

from which the assertion follows.

Remark 2. Using the previous results and integral relations stated in [5, Lemma 1],
it is easy to show when the integrals Qu, Ru have the same behavior for any prin-
cipal solution u of (1).

We start by considering the case Ja = ∞. If p ≥ 2, from Theorems D and 3 we
have Qu = Ru = ∞. Now consider the case J2 < ∞, 1 < p < 2 (and Ja = ∞).
By applying [5, Lemma 1] with µ = (p− 1)/(2− p) and λ = p− 1 and taking into
account µ > λ, we obtain

Y2 = ∞ =⇒

∫

∞ ( 1

a(t)

)1/(p−1)(
∫

∞

t

b(s) ds
)(2−p)/(p−1)

dt = ∞ .

Thus, if Y2 = ∞, in virtue of Theorems 3, 4, we have Qu = Ru = ∞. Observe
that when Ja = ∞, J2 < ∞, Y2 < ∞, 1 < p < 2, the condition (17) can fail, as the
example in [3, Corrigendum] shows. In such a circumstance, again from Theorems
3, 4, we have Qu < ∞, Ru = ∞ and so the integrals Qu, Ru have a different
behavior.

In the case Jb = ∞ the situation is similar. By applying the above argument
to the reciprocal equation (6) we obtain that Qu = Ru = ∞ when 1 < p ≤ 2. The
same conclusion holds if J1 < ∞, Y1 = ∞ and 1 < p < 2. Finally, when Jb = ∞,
J1 < ∞, Y1 < ∞, p > 2, the condition (18) can fail, and it is easy to produce an
example in which Qu = ∞, Ru < ∞.

Remark 3. Analogously to the limit characterization, it remains an open prob-
lem to find an integral characterization of principal solutions in both cases (11).
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When b may change its sign, the limit and integral characterization of the princi-
pal solutions have been partially solved in [4] provided Ja < ∞. These problems
remain open in the opposite case Ja = ∞ as well.
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