Previous |  Up |  Next

Article

Keywords:
algebraic curvature tensors; affine curvature tensors
Summary:
We use curvature decompositions to construct generating sets for the space of algebraic curvature tensors and for the space of tensors with the same symmetries as those of a torsion free, Ricci symmetric connection; the latter naturally appear in relative hypersurface theory.
References:
[1] Bokan N.: On the complete decomposition of curvature tensors of Riemannian manifolds with symmetric connection. Rend. Circ. Mat. Palermo XXIX (1990), 331–380. MR 1119735 | Zbl 0728.53016
[2] Díaz-Ramos J. C., García-Río E.: A note on the structure of algebraic curvature tensors. Linear Algebra Appl. 382 (2004), 271–277. MR 2050112 | Zbl 1056.53014
[3] Fiedler B.: Determination of the structure of algebraic curvature tensors by means of Young symmetrizers. Seminaire Lotharingien de Combinatoire B48d (2003). 20 pp. Electronically published: http://www.mat.univie.ac.at/$\sim $slc/; see also math.CO/0212278. MR 1988613 | Zbl 1043.53016
[4] Gilkey P.: Geometric properties of natural operators defined by the Riemann curvature tensor. World Scientific Publishing Co., Inc., River Edge, NJ, 2001. MR 1877530 | Zbl 1007.53001
[5] Singer I. M., Thorpe J. A.: The curvature of $4$-dimensional Einstein spaces. 1969 Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 355–365. MR 0256303 | Zbl 0199.25401
[6] Simon U., Schwenk-Schellschmidt A., Viesel H.: Introduction to the affine differential geometry of hypersurfaces. Science University of Tokyo 1991. MR 1200242
[7] Strichartz R.: Linear algebra of curvature tensors and their covariant derivatives. Can. J. Math. XL (1988), 1105–1143. MR 0973512 | Zbl 0652.53012
[8] Weyl H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und der konformen Auffassung. Gött. Nachr. (1921), 99–112.
Partner of
EuDML logo