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ALGEBRAIC THEORY OF AFFINE CURVATURE TENSORS

N. BLAZIC, P. GILKEY, S. NIKCEVIC, AND U. SIMON

ABSTRACT. We use curvature decompositions to construct generating sets for
the space of algebraic curvature tensors and for the space of tensors with the
same symmetries as those of a torsion free, Ricci symmetric connection; the
latter naturally appear in relative hypersurface theory.

1. INTRODUCTION

Let V' be a real vector space of dimension m; to simplify the discussion, we
shall assume that m > 4 henceforth; similar results hold in dimensions m = 2
and m = 3. In Section 2, we discuss the space of curvature operators R(V) C
®2V* @ End(V). These are operators with the same symmetries as those of the
curvature operator of a torsion free connection on the tangent bundle of a smooth
manifold. One has that R € R(V) if and only if for all x,y,z € V,

(L.a) R(z,y)z = —R(y,z)z and
(1.b) R(z,y)z + R(y,z)x + R(z,z)y =0.
Equation (1.b) is called the first Bianchi identity. We have, see for example
Strichartz [7], that
dim R(V) = gm?(m? —1).
In Section 3, we discuss the space of algebraic curvature tensors a(V) C @4V*.
This is the space of tensors with the same symmetries as that of the curvature

tensor defined by the Levi-Civita connection of a pseudo-Riemannian metric; A €
a(V) if and only if for all z,y, z,w € V,

(1.c) Az, y,z,w) = —A(y, z, z,w),

(1.d) Alz,y, z,w) + Ay, z, 7, w) + A(z, z,y,w) = 0,
(Le) Alz,y, z,w) = A(z,w, z,y),

(1.f) Alz,y, z,w) = —A(z,y,w, 2) .

2000 Mathematics Subject Classification. 53B20.

Key words and phrases. algebraic curvature tensors, affine curvature tensors.

N. Blazi¢ passed away Monday 10 October 2005. This article is dedicated to his memory.
The paper is in final form and no version of it will be submitted elsewhere.



148 N. BLAZIC, P. GILKEY, S. NIKCEVIC, AND U. SIMON

We shall show in Theorem 3.2 that identities (1.e) and (1.f) are equivalent in the
presence of identities (1.c) and (1.d). One has, see for example Strichartz [7], that:

dim{a(V)} = mz=0

If R € R(V), it is natural to consider the traces:

p1a(R)(z,y) :=Tr{z — R(z,z)y},
(1.g) p2a(R)(w,y) := Tr{z — R(z, 2)y},
p3a(R)(z,y) := Tr{z — R(z,y)z}

The identities of Equations (1.a) and (1.b) show that:

p24(R) = —p14(R) and
p31(R)(2,y) = —p1a(R)(2,y) + pra(R)(y, x) -
In Section 4, we discuss the affine curvature operators F(V) € (V). These are

the operators with the same symmetries as those of an affine connection without
torsion; F € F(V) if and only if for all z,y,z € V,

(1h)

(L.i) Fla,y)z = —F(y, )z,

(1.j) Fz,y)z + F(y, 2)x + F(z,2)y =0,
(Lk) pra(F)(z,y) = p1a(F)(y, z),

(1.1) p3a(F) =0.

By Equation (1.h), Equations (1.k) and (1.1) are equivalent in the presence of
Equations (1.1) and (1.j); thus these are the symmetries of the curvature operator
of a torsion free, Ricci symmetric connection on the tangent bundle of a smooth
manifold. Such curvature operators appear naturally as curvature operators of the
induced and of the conormal connections in relative hypersurface theory; see [6].
The natural structure group of the spaces R(V), a(V'), and F(V) is the gen-
eral linear group GL(V). Let O(V,(-,)) be the orthogonal group associated to a
non-degenerate symmetric bilinear form (-,-) € S?(V*) of signature (p,q) on V.
We can use (-,-) to raise and lower indices and define an O(V, (-,-)) equivariant
identification between ®4V* and ®?V* ® End(V) by means of the identity:

(1.m) R(z,y, z,w) = (R(x,y)z, w) .
We let
‘C(V) C ®4V*7 m(‘/v <'7 >) - ®2V* ® End(V), f(‘/v <'7 >) C ®4V*

be the subspaces associated to R(V), a(V), and §(V), respectively; R € ¢(V) if
and only if for all z,y, z,w € V, one has

R(‘ray7z7w) = —R(y,x,z,w),
R(‘ray7z7w) + R(y,z,x,w) + R(z,x,y,w) =0.
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We have A € A(V, (-,-)) if and only if for all z,y, z,w € V one has:

Alz,y) = —Aly, z),

A )z + Ay, 2)z + A(z,2)y = 0,
(A(z, y)z,w) = (A(z,w)z, y),

(A, y)z,w) = —(Alz, y)w, 2),

(z,y
(z,y
(
(
the last two identities being equivalent in the presence of the first two. Finally
F e §(V,(-,-)) if and only if for all x,y,z,w € V one has:

) F(xvyvsz):_F(yavavw)v

) F(x7 y’ Z’ w) +F(y’ Z’ Jj’ w) +F(Z’ Jj’ y7 w) = O’

) pra(F)(z,y) = pr1a(F)(y, ),

) (JdeTr)F =0.

Again, identities (1.p) and (1.q) are equivalent given the identities of Equations
(1.n) and (1.0).

The spaces 2(V, (-,-)) and §(V, (-, -)) depend upon the choice of the inner prod-
uct; the space t(V') does not. Thus it is convenient to keep the distinction between
subspaces of @2V*®End(V) and ®*V*; this will play a crucial role in the proof of
Theorem 4.2. The spaces R(V), 2(V), and F(V) are subspaces of @*V*@End(V);
elements of these spaces will be denoted by R, A, and F, respectively, and are
operator valued bilinear forms. The spaces t(V'), a(V), and f(V') are subspaces of
@4V *; elements of these spaces will be denoted by R, A, and F, respectively, and
are quadralinear forms. We have the inclusions:

a(V) c V() < (V).

Let {e;} be a basis for V. If 1 € ®2V* and if © € @*V*, set

Vij i =1(eiej) and Ok = Oe;, e, e, e) .

Let {e’} be the associated dual basis for V*. Then
Y= i @el and © =3 Yine @ el @eF @el.

If (-,) is a non-degenerate inner product on V, let
(1.r) Eij == (eirej) and Y. BV = o
where 4 is the Kronecker symbol. One then has:

Zij E(z,e;)e; =x and Tr{y} = Zij S

We shall decompose the natural action of GL(V) and of O(V,(-,-)) on the
spaces R(V), a(V), and F(V) as the direct sum of irreducible modules and use
these decompositions to exhibit generating sets for these spaces and to derive other
natural geometric properties.
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Our motivation in this paper is to study affine curvature operators; as already
stated above, these are the curvature operators which naturally appear as curva-
ture operators of the induced and of the conormal connections in relative hyper-
surface theory. Moreover, in this situation, there naturally appears a metric, the
so called relative metric, which permits us to raise and lower indices. Our aim is
a characterization of the affine curvature operators, arising from torsion free and
Ricci symmetric connections, in the space of all curvature operators arising from
torsion free connections. Via the decomposition results of Section 4, these are
characterized by the vanishing of the component W5. We will study the geometric
meaning of the various components in this decomposition, at least in the case of
relative hypersurfaces, in a subsequent paper.

2. CURVATURE OPERATORS

In this section, we study operators with the same symmetries as those of a
torsion free connection on the tangent bundle of a smooth manifold.

2.1. Geometric representability of curvature operators. If V is a torsion
free connection on the tangent bundle of a smooth manifold M, let RV be the
associated curvature operator; if P € M and if x,y,z € TpM, then

Rg(x,y)z = {V,;Vy - VyVy — V[m7y]} Z-

One then has RY € R(TpM) since the symmetries of Equations (1.a) and (1.b)
hold. Conversely, every curvature operator is geometrically representable by an
torsion free connection:

Theorem 2.1. Let R € R(V) be given. Regard V' as a smooth manifold in its
own right. Let 0 be the origin of V' and identify ToV = V. Then there exists a
torsion free connection V on V so that Ry = R.

Proof. Let R € R(V). Expand R(e;,e;)er, = >, Riji'e; relative to some basis
{e;} for V. Let {z;} be the associated dual coordinates; if e € V, then e =
> wi(e)e;. Define a connection V on TV by setting

Vo,, 0z, =Y 4 Tap?0s, for T :=—13 2 {Racs? + Roca’} -
Since Vo, O, = Va,, 0z,, V is torsion free. As I'(0) = 0,
R Dy 02)0 = 32402, L' — 00, Tik') O,
= =3 Y {Rjin' + Ruij© — Rij* — R } 0,
= -2 3 {2Rijk' + Reis' + Rjri' 0o, = Riji' Os, -
This completes the proof of the desired result. O
2.2. The Jacobi operator. This operator is defined by setting:
Jr(@)y =Ry, x)z.

It plays a central role in the study of geodesic sprays. The following result is known
in the context of Riemannian geometry; it extends easily to the more general
setting.
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Lemma 2.2. Let R € R(V). If Jr =0, then R =0.
Proof. Jz(x) is quadratic in . The associated bilinear form is given by
Trle,y) 2 — 2{0.Tr( + ey)}zleo = ${R(z.2)y + R(z.y)x}
If Jr(x) =0 for all x € V, one has the additional curvature symmetry
R(z,2)y + R(z,y)x =0
for all z,y,z € V. We compute:
0=R(z,y)z + R(y, 2)x

+

R(z,z)y
=R(z,y)z — R(y,x)z — R(z, 2)y
=R(z,y)z + R(z,y)z + R(z,y)z .

The Lemma now follows. O

)

N
_l’_

2.3. The action of the general linear group on (V). This action is not
irreducible, but decomposes as the direct sum of irreducible modules. Let

(2.a) (V) :=ker{p14} NR(V).

The decomposition V* @ V* = A2(V*) @ S2(V*) is a GL(V) equivariant decom-
position of V* ® V* into irreducible modules; we let 7, and 75 be the appropriate
projections where

(2.b) Ta($)ij i= 5(Yi5 —5i) and o (P)ij := 5(Yij + Vi) -

We may therefore decompose p14 = 74 © p14 ® 75 © p14 where p14 is as defined in
Equation (1.g). One has the following result of Strichartz [7]:

Theorem 2.3. The map p14 defines a GL(V) equivariant short exact sequence
0— UV) = R(V) L2 A2V e S2H(VF) =0
which is equivariantly split by the map ox,op1, ® Ox 0p, Where
Traopia(@)(@,9)2 = T {20(@, y)z + w(z, 2)y —w(y, 2)a}  for we A (V¥),
Tryopa (V) (@,9)2 = 755 {0 (2, 2)y — Y(y, 2)z}  for ¢ € S*(V™).
This gives a GL(V') equivariant decomposition of
RV) =UV) @ A*(V*) @ S* (V)
as the direct sum of irreducible GL(V') modules. We have
dim{(V)} = tm2(m? —4), dim{A?(V*)} = fm(m —1),
dim{S*(V*)} = im(m+1), dim{R(V)} = im*(m? —1).
Proof. We check the splitting as follows. If w € A%2(V*), let Ry = 0, o0p1s (W)-
Then Ry (x,y) = —Rw(y, z). We check the Bianchi identity by computing:
Ro(x,y)z + Ru(y, 2)x + Ry (z,2)y = 11—%{2@(3:, Yz tw(z,2)y —wly,2)z
+2w(y, 2)r +w(y, )z —w(z,2)y + 2w(z,z)y + w(z,y)r — w(z,y)z}
=0.
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Thus R, € R(V). One also has that:

Pra(Ru)(y, 2) = 755 i €' {2w(ei y)z + wlei 2)y — w(y, 2)ei}

= 1__|.—1n{2w(zay) + w(?/» Z) - mw(?/» Z)} = w(ya Z) :

Let ¢ € S%(V*) and let Ry = 0r_ops(¥). Again, Ry(z,y) = —Ry(y,z). We
verify the Bianchi identity by computing:
Rup(,9)z + Ry, 2)x + Ry(z, 2)y
1
= Tl 2y — U, 2 b2z — Uz )y + () — (,9)7)
=0.
This shows that Ry € (V). Furthermore:

p1a(Ry)(y, 2) = 2= o e{w(es, 2)y — ¥ (y, 2)ei}
= 2 {(y,2) —m(y,2)} = ¥(y,2).

Consequently one has an equivariant decomposition of R(V) into GL(V') modules:
R(V) =U(V) s A (V)@ S*(V*).
We refer to [7] for the proof of the remaining assertions of the Theorem. O

We say that two torsion free connections V and V on a differentiable manifold
M are projectively equivalent if and only if every every geodesic for V can be
reparametrized to be a geodesic for V, or equivalently if there exists a smooth
1-form w so

Vaoy = Voy = w(@)y + w(y)z.

The summand (V) plays the role of the Weyl projective tensor; it also plays a
role in the affine setting as we shall see presently in Theorem 4.1. Let 7y be the
associated projection on this summand in the decomposition of Theorem 2.3. One
has [6, 7, 8]:

Lemma 2.4. Let V and V be torsion free connections on M.

(1) If V and V are projectively equivalent, then myR = myR.
(2) The connection V is projectively flat if and only if myR = 0.

2.4. The action of the orthogonal group on (V). The associated orthogonal
group O(V, (-, -)) acts on (V) and on t(V); the natural map from R(V) to t(V)
given by Equation (1.m) is an equivariant isomorphism. Let = be as in Equation
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(1.r). We define:
A2(V*) = {we V" Wij = —Wji},
SV () = € @2V sy =i, 2oy EYey; = 0},
w(V, () == {0 € @*V*: Q411 + Ojkit + Oriji =0,
Oijkt = —Ojirt = Opiijs Doy 'O = 0},
A2(A*(VF)) == {0 € @'V* : Ojjr = —Ojist = —Oijik = —Ouij}
AFA2(V9)) = {0 € A2(A* (V™)) : 32, E"Oy5m = 0},
S(V, () :={0 € @' V" : O4jrs = —Ojirs = Oijir, >y Z'Oijm = 0,
Okjit + Oikji — Orjit — Oije = 0} .
Note that A2(A2(V*)), A3(A%(V*)), and &(V, (-,-)) are not subsets of a(V).
Theorem 2.5.
(1) There is an O(V, (-,-)) equivariant orthogonal decomposition of
RV)=e(V)=W1®---&Wsg
as the direct sum of irreducible O(V, (-, -)) modules where:

dim{W,} =1, dim{W,} = dim{W5} = (m—l)z(m+2) 7
dim{W3} = dim{W,} = m@m=b) dim{We} = mmtL(m=3)(m+2]

)

12 ’
dlm{W7} _ (mfl)(m72)8(m+1)(m+4) ’ dlm{Wg} _ m(mfl)(n;73)(m+2) )

(2) There are the following isomorphisms as O({-,-)) modules:
(a) W1 ~ R, W2 ~ W5 ~ Sg(V*, <', >), and W3 ~ W4 ~ AQ(V*)
(b) Ws = w(V, (-,-)) is the space of Weyl conformal curvature tensors.
(c) W7 = &(V,(-,-)) and Wg ~ A3(A%(V*)).

We refer to Bokan [1] for the proof of Assertion (1) in the context of a positive
definite inner product; it extends immediately to the indefinite inner products.
We will prove Assertion (2a) later in this section. We will prove Assertion (2b) in
Section 3. We will prove Assertion (2c¢) in Section 4.

Remark 2.6. Since Wy and W5 are isomorphic as O(V, (-, -)) modules and since
W3 and Wy are isomorphic as O(V, (-, -)) modules, the decomposition of R(V') into
irreducible module summands is not unique; this fact plays an important role in
the analysis of Bokan [1].

We shall need a technical result before proving Theorem 2.5 (2). We use Equa-
tion (1.m) to lower indices and to define a curvature tensor R associated to a
curvature operator R. Let Z be as in Equation (1.r). Then:

p14(R)(x7y) = Z” Ein(eivxvyv Gj), P23(R)(33>y) = Z” E”R(.’IJ, €, ejvy)v
p2a(R)(2,y) = >, E9R(x,e5,y,¢5),  pi3(R)(z,y) := X, EY R(ei, x, ¢4, y),

p3a(R)(z,y) =3, EYR(z,y, e, €5) = —p1a(R)(z,y) + pra(R)(y, ) -

[
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There is an O(V, (-, -)) equivariant decomposition:
VeV =A(V)e S§V,(,)eR
where SZ2(V*, (,-)) is the space of trace free symmetric bilinear forms, and where

R is the trivial O(V, (-, -)) module. If 7,, 7, and 7 are the associated orthogonal
projections, then

ma(¥)(2,y) = 5{¥(z,y) — Y (y, )},
(2.c) s (V) (2, y) == g{w(x y) + ¥y, )},
. () = Z = P(ei, e5),

mo(¥)(x,y) = ms(Y) (@, y) — T (®)(, ) -

There is only one non-trivial scalar curvature arising from R € t(V') since

7(p1a(R)) = ¥y E'EF Rlei, e, ex, 1) = 7(p2s(R)) = —7(pas(R)),
7(p34(R)) = 2,50 EVEM R(essej,ex,e1) = 0.

If € S(V*,(-,-)) and if w € A2(V*), let:

a1 () (@, y, 2, w) = P(z, w){y, 2) — P(y, w)(z, 2),
o2 () (2, y, 2, w) = (2, w)P(y, 2) — (y, w)(z, 2),
o3(W)(2,y, 2,w) := 2w(z, y)(z,w) + w(z, 2){y, w) — w(y, 2)(z, w),
oa(W)(z,y, 2, w) := w(z, w)(y, 2) —w(y, w)(z, 2) .

Lemma 2.7.

(1) o1 and o2 are O(V, {-,-)) equivariant maps from SZ(V*,(-,-)) tot(V), o3
and o4 are O(V, (-,-)) equivariant maps from A2(V*) to v(V), and

p14a001 pP23o01 \ _ —id (m—1)id
P14 © 02 P23 O 02 - (m—l) id —id )’
( p13003 34003 ) _ ( =3id 2(m+1)id
= )

P13004 P34 004 —m)id 2id
(2) We have O(V, {-,")) equivariant sequences which are equivariantly split:

ropait(V) = R0,
o © P14 D 7o © P13 ¢ t(V) - Sg(V*’ <" >) 2 Sg(V*v <'7 >) — 0,
Ta 0 p13 D a0 p3g i (V) — A2(V*) @ A2(V*) = 0.

Proof. Let ¢ € SZ(V*,(-,+)) and let w € A%2(V*). Set Ry := 01(¢)), Ra := 02(%),
Rs3 := 03(w), and Ry := o4(w). It is immediate R;(x,y, z,w) = —R;(y,x, z,w).
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To show that R; € t(V'), we must verify the first Bianchi identity is satisfied:

Ri(z,y,z,w) + Ri(y, z,z,w) + Ri(z,x,y,w)
= Y(z,w){y, 2) — P(y, w)(z, 2)
+ Uy, w)(z,x) — (2, w)(y, z)
+¥(z,w)(z,y) — (@, w)(z,y) =0,
Ro(x,y, z,w) + Ra(y, 2z, x,w) + Ra(z, 2, y,w)
= (z,w)(y, 2) — (y, w)¥(z, 2)
+ Y, w)¥(z,2) — (2, w)h(y, 7)
+ (z, whp(z,y) — (z, whp(z,y) =0,
Rs(z,y, z,w) + R3(y, z,z,w) + R3(z,z,y,w)
= 2w(z,y)(z, w) + w(z, 2)(y, w) — w(y, 2)(z,w)
+ 2w(y, 2){z, w) + w(y, ){z, w) —w(z, )y, w)
+2w(z,z){y,w) + w(z,y){z,w) —w(z,y){z,w) =0,
Ry(z,y,z,w) + Ra(y, 2z, z,w) + Ry(z, 2, y,w)
= w(z,w)(y, 2) — wly, w)(z,z)
+w(y, w)(z, z) — w(z,w)(y, )
+w(z,w){z,y) —w(z,w){z,y) =0.

We complete the proof of Assertion (1) by computing:

p14(R1)(y7 Z) = Zij Elj{w(ezv ej)<y7 Z> - ql)(yv 6j)<6i, Z>}
= T(¢)<y7 Z> - ql)(yv Z) = _ql)(yv Z) )

pas(Ry) (@, w) = 30, EV{dh(w, w)(ei, ;) — v(ei, w){x, e5)}

= (m - )p(z,w),
pra(Ro)y(y, 2) = 30, E7V (e e))¥(y, 2) — (y, ) (ei, 2)}
= (m - ]')ql)(yv Z) )

pa3(R2)(z,w) = Zij E7{(z, w)(es, ) — (e, w)(x, e5)}
= 7() (@, w) — (@, w) = —(z,w),

p13(Rs)(y, w) = 32, B9 {2w(ei, y)(ej, w) + wles, e5)(y, w) — w(y, e;)(ei, w)}
= —3w(y,w),

psa(Rs)(w,y) = 32,5 V{20 (@, y){es, €5) + w(w, €i)(y, €5) — w(y, e:)(w, ei)}
=2(m+ Dw(z,y),
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p13(Ra)(y, w) = 32 E9{w(ei, w)(y, €5) — w(y, w)ei, )} = (1 — m)w(y, w),

p3a(Ra)(z,y) = 30, EHw(, ¢5)(y, €i) — wly, e;) (@, ei)} = 2w(2,y).
We now prove Assertion (2). We show the first sequence splits by computing;:
mT(PM(UN» '>)) = m Zijkl R EiZjk — Eikajl}
_ 1 isJ FYAg
= =T 210107 — 005} = 1.

As the determinants of the two coefficient matrices in Assertion (1) are non-zero,
the desired splitting of the second and of the third sequences follows. O

Proof of Theorem 2.5 (2a). By Lemma 2.7, R has multiplicity 1, S3(V*, (-, )
has multiplicity 2, and A%(V*) has multiplicity 2 in the decomposition of t(V) as
an O((-,-)) module. These modules are irreducible and

dim{R} =1, dim{S(V", ()} = C=HE - dim{A%(V7)) = 2=l

Theorem 2.5 (2a) now follows from Theorem 2.5 (1). O

3. ALGEBRAIC CURVATURE TENSORS

In this section, we study the quadralinear forms with the same symmetries as
those of the Levi-Civita connection of a pseudo-Riemannian manifold.

3.1. The action of the general linear group on a(V).
Theorem 3.1. a(V) is an irreducible GL(V') module.

We postpone the proof of this result until Section 5 as we must first establish
some additional notation.

3.2. The action of O(V,(-,-)) on a(V). Let
(3.a) (iId@m)(R)(z,y, 2,w) := ${R(z,y,z,w) + R(z,y,w,2)} for Rex(V).
If ¢,1 € S?(V*), one can define an algebraic curvature tensor ¢ A ¢ € a(V) by:
{0 A0} (x,y, 2,w) = {o(z, W) (y, 2) — d(x, 2)1(y, w)

+ oy, 2)p(x, w) — Py, w)p(x, 2)} .

(This has a different normalizing constant than the usual Kulkarni-Nomizu prod-
uct). These tensors arise naturally. If L is the second fundamental form of a
hypersurface M in R™+!, then

(3.b)

Ry=LANL.
Define:
m(‘/v <'7 >) = ker{p14} n CI(V) )

(3.c) Oid@m, ()ijkt = Sijut + 5{Skji + Sinji — Stjix — Sujn}

Oa,p1a (¢) = ﬁd) A <'7 > - %<7 > A <'7 > .
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Theorem 3.2.

(1) Let R € ®*V* satisfy Equations (1.c) and (1.d). Then Equations (1.e)
and (1.f) are equivalent.

(2) The maps id®@ms and p1a define GL(V') and O(V, (-,-)) equivariant short
exact sequences, respectively,

0— a(V) — t(V) “227, A2(V*) @ S3(V*) — 0,
0—w(V, () —aV) 2% S2(V*) - 0.

which are equivariantly split, respectively, by the maps oiq gr, and 0q p, -
(3) This gives an O(V,{-,-)) equivariant decomposition of

as the direct sum of irreducible O(V, (-,-)) modules where

dim{ro(V, (-, )} = £m(m+1)(m +2)(m —3), dim{R} =1,
dim{SF(V*, (-, )} = 2(m — 1)(m +2), dim{a(V)} = 5m?(m? —1).

Proof. It is immediate that (1.c) and (1.e) imply Equation (1.f). Conversely,
suppose that Equations (1.c), (1.d), and (1.f) hold. We use the following notation:

R(£1,62,83,84) = a1, R(&,84,61,&) = a1+ 61,
R(£1,83,8,84) = a2, R(&,84,61,83) = ax + 2,
R(£2a§3a§17£4) =as, R(£17£47£2a§3) :a3+€3~

We establish Assertion (1) by showing €1 = g2 = 3 = 0. We compute:

0= R(£1,82,83,8) + R(§2,83,61, &) + R(€3,&1,62,&4)

=a1 +a3—az,

0= R(&1,8,64,83) + R(&2,&4,61,63) + R(64, &1, 62,83)

= —a]+0ay —ag +&2 —E3 =€ —€3,

0= R(£1,83,84,82) + R(€3,84,61, &) + R(84,61,63,&2)

= —ag+a1+a3z+¢e1+€e3=¢€1+¢€3,
0= R(£2,83,84,&1) + R(€3,84,62,&1) + R(E4,82,83,&1)

=—a3—a;+ag —€1+€e2=—€1+¢2.

This yields the equations 0 = €5 —e3 = €1 + €3 = —e1 + €2 from which it follows
that ey = g2 = €3 = 0; this proves Assertion (1).
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Let S € A*(V*) ® S?(V*). We compute:
Oid @m, (9)ijkl + Tid @m, (5) ikl
= Sijkt + 5 (Skjit + Sikji — Sijik — Sitjk)
1
+ Sjir + §(Skijl + Sjrit — Siijk — Sjuik) =0,
Oid @m, (9)ijkl + id @m, (S) jkit + Oid @, () kiji
= Sijkt + 5 (Skjit + Sikji — Sijik — Sitjk)
+ Sjkit + 5(Sikjt + Sjirt — Sikji — Sjiki)
+ Skiji + 3 (Sjikt + Skjit — Stikj — Skiij) = 0.
This shows that oiq g, takes values in t(V). Let a(S) := diggr.S — S. Then
(3.d) ()it = 3(Skjir + Sirji — Stjie — Sijr) € A2(V*) @ A2(V*).

The map « will also play a role in Section 4.3. Since id @75 vanishes on the space
A%2(V*) ® A%2(V*), one has that

(1d @) (010 9. (S)) = (id @7,)(S) + (id @) a(S) = S .

This shows that id ®m is an equivariant splitting. We refer to Singer and Thorpe
[5] or to Strichartz [7] for the proof of the remaining assertions. O

Proof of Theorem 2.5 (2b). Because tv is the space of Weyl conformal tensors,
dim{r(V, (-,))} = sm(m + 1)(m — 3)(m + 2) = dim{W} .

Since w(V, (-,-)) is an irreducible O(V, (-, -)) module, we may use Theorem 2.5 (1)
to identify Ws = w(V, (-, -)). O
Theorem 2.1 generalizes immediately to this setting:

Theorem 3.3. Let A € a(V) be given. Regard V as a smooth manifold in its
own right. Let O be the origin of V and identify ToV = V. There exists a pseudo-
Riemannian metric g defined on V so that R} = A where R is the curvature
tensor of the associated Levi-Civita connection.

Proof. Let {e;} be an orthonormal basis for V. Let x; be the associated coordinate
system. We define the germ of a pseudo-Riemannian metric on V' by setting

Yab = g(azaa amb) = <€aa eb> - % ch AgedbTeZd -

Clearly gab = gba- As glryv = (-, ), ¢ is non-degenerate near 0. One may then use
a partition of unity to extend g to be non-degenerate on all of V' without changing
it near 0. One has

Liji = 9(Vo,,0r;,0n,) = 5(0u: 95k + O, Gite — O, 9i) -
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Since T';;1(0) = 0, one has
Rijri(0) := R(0x,;, 0r;, Ory 02,)(0) = {02, T jr1 — Or, T'ira }(0)

= ${04, (0, gt + 02,951 — 02, 9jk) — O, (0w, gt + O, 9it — Oz, i) } (0)
= H{—Ajir — Ajrear + Ajie + Ajiir + Aijra + Airt — Aijie — Aaj}
= {441 — 2Au5 — 2Aij } = Aijit -

The desired result now follows. O

The following result was first proved by Fiedler [3] using Young symmetrizers;
subsequently Gilkey [4] established it using a direct construction and Diaz-Ramos

and Garcia-Rio [2] derived it from the Nash embedding theorem. We adopt the
notation of Equation (3.b) to define ¢ A1 € a(V) for ¢, € S2(V*).

Theorem 3.4. a(V) = Spang{d A ¢ : ¢ € S2(V*)}.
We use Theorem 3.2 to establish a slightly stronger version of Theorem 3.4:

Theorem 3.5.
(1) If A € a(V), there is a finite collection of elements ¢, € S*(V*) such that
Rank{¢,} = 2 and such that A=3" ¢, N\ ¢,.
(2) Suppose given (p,q) with 2 < p+q < m. Let S(Zp’q)(V*) be the set of all
symmetric bilinear forms on V of signature (p,q). Then

a(V) = Span(besfp,q)(v*){(b A ¢} .
Proof. Consider the following GL(V) invariant subspace of a(V):
b(V) := Spang{p A ¢ : ¢ € S*(V*),Rank{¢} = 2}.

We apply Theorem 3.1 to show b(V) = a(V). This shows that we may express
any A € a(V) in the form ¢1¢1 A ¢1 + - - - + cxdr A ¢ where the ¢, are symmetric
bilinear forms of rank 2 and where the ¢, € R. By rescaling the ¢,, we may assume
that the ¢, = £1. Set a1 == e! ®el +e?®e? and an :=e! ®e? +e2@el. We have
(a1 Aag)(er, ez, ea,e1) =41 and (g A as)(er, ez, e0,e1) = —1.
Thus a3 A @1 = —ae A az. Consequently, by replacing a definite form by an
indefinite form or an indefinite form by a definite form if necessary, we can change
the sign and assume that all the constants ¢, are equal to 1. Assertion (1) now
follows.
To prove Assertion (2), we set

b(V) = Slf>8m¢>esfp,q)(v*){ﬂ5 A ¢}

As this is a non-empty GL(V) invariant subspace of a(V), Theorem 3.1 shows
a(V) =b(V) as desired. O
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4. AFFINE CURVATURE TENSORS IN THE ALGEBRAIC SETTING

4.1. The action of the general linear group on F(V). We adopt the notion
of Equation (2.a) to define LI(V'); the geometrical significance of this subspace is
given in Lemma 2.4.

Use Equations (1.g) and (2.b) to define p14, 74, and 7s. Let 0 0p,, and ox op,,
be as in Theorem 2.3. The following is an immediate consequence of Theorem 2.3:

Theorem 4.1. We have the following GL(V') equivariant short exact sequences
0= F(V) = R(V) == A*(V*) =0,
0— UV) = F(V) =2 S2(V*) -0

which are equivariantly split by the maps O, op,, ONA Or_ op,,, TESPEctively. This
gives a GL(V) equivariant decomposition of

F(V) =4(v) @ 8*(v7)
as the direct sum of irreducible GL(V') modules where

dim{8(V)} = M 7

dim{dim{S*(V*)} = tm(m + 1),

dlm{S(V)} _ m(mfl)(2gl +2m—3) )

We use this result to generalize Theorem 3.4 to the setting at hand. We exploit
in an essential way that the space A(V, (-,-)) depends non-trivially on the par-
ticular bilinear form which is chosen. Let G, 4)(V) be the set of non-degenerate
bilinear forms on V' of signature (p,q). Let G, 4 (M) be the set of all pseudo-
Riemannian metrics on a smooth m-dimensional manifold M of signature (p, q).
If g € Go,m)(M) and if P € M, let R(g, P) be the curvature operator of the
Levi-Civita connection defined by g.

Theorem 4.2.
(1) Ifp+q=m, then §(V) = Span.yeq, . {2V (5 D)}
(2) We have that F(TpM) = Spangeg(ovm)(M){’R(g,P)}.
Proof. Let
B(V) = Span_yeq,, . {AV, ()}
Let U € GL(V). If A€ 2(V,{(-,-)), then
U*A e AV, T"(-,-)).

Thus B(V) is invariant under the action of GL(V'). Since B(V) # {0}, Theorem
4.1 shows exactly one of the following alternatives holds:

(1) B(V) = ker{nms 0 p14}.

(2) B(V) = S2(V*).

3) B(V) =3(V).
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If (-,-) € Gp,g)(V), let Ay € A(V, (-,-)) be the associated algebraic curvature
operator of constant sectional curvature:

Apy(@,y)z = (y, 2)x — (z,2)y .
Since p14(A(..y) = (m —=1)(:,-), B(V) # ker{p14}. This eliminates the first possi-
bility. Since m > 4, m(m + 1) > 6. Consequently,
dim{B(V)} = dim{2A(V, (-,-))} = 2=l mOntl) _ gim(§2(V*)} .

This eliminates the second possibility. Thus the third possibility holds; this proves
Assertion (1).
Let V.=TpM. Let go € Go,;m)(T'pM). By Theorem 3.3,

AV, go) = Ugég(o,m),g\TPMzgo{R(g’P)}'

Assertion (2) now follows from Assertion (1). O

4.2. Centro affine geometry. Let h € S2(V*) and let C € S?(V*) ® V. Define
Ru(x,y)z == h(y, 2)x — h(z, 2)y,
Re(w,v)u :=C(v,C(w,u)) — C(w,C(v,u)).
The decomposition of Theorem 4.1 has geometric significance. Let h be the cen-
troaffine metric, let V be the induced connection, and let V* be the conormal

connection. Then Ry is the curvature operator of both V and of V* while the
Riemannian curvature tensor of the associated Levi-Civita connection is given by

Rec + Ri.

Theorem 4.3.
(1) Rn € UWSOPMS (V*) and aﬂ‘sOPMSZ(V*) - Spanh652 {Rh}
(2) Re € (V) and (V) = Spancegz(y+)gviRe}-

Proof. Assertion (1) follows from the discussion given to establish Theorem 4.1.
We begin the proof of Assertion (2) by computing:

Re(v,w)u = C(w,C(v,u)) — C(v,C(w,u)) = —Re(w,v)u,
Re(w,v)u + Re(v, u)w + Re(u, w)v = C(v,C(w,u)) — C(w,C(v,u))
+ C(IU, C(ua U)) - C(U, C(IU, U)) + C(U, C(Ua w)) - C(Ua C(ua UJ))
=0.
Let C(es, e5) = >y Cijkek where {e;} is a basis for V. We show that R¢ € §(V)
by checking:
Relei,ej)er =3 ,{Cu" Cik L—CunCjx'len,
p3a(Re)(es, e5) = Zkl{cjl ! — Ca*Cily = 0.

Let B(V') := Spange g2 (v+ygv{Re}. For e # 0, let the non-zero components of
C be given by:

1 1 2 1 1 3
Coi =Ci2 =C11*" =031 =Ci3 =C1° =¢
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We have
p14(Re)(ez, e2) = Zl,i{czzicizl —Cy'Cop!} =2 #£0.
This shows that p14(Rc¢)(e2,e2) # 0. Consequently
OrroprS2(VF) C B(V).
We also compute
Re(er,e2)er = Zl’n{cmncnl — Cu"Car'le,
=Cy'Cri'er — C11°Carten — C11°Cor e
= —c%(eg +e3).
If Re € OniopisS?(V*), then Re(er,e2)er € Span{eq, ea} which is false. Thus
TreopaS (V) & B(V).
The desired result now follows. O

4.3. The action of O(V, (-,-)) on F(V). We can use Theorems 2.5 and 4.1 to see
that there is an O(V, (-,-)) equivariant orthogonal decomposition of

& Sg(V*7 <'7 >) D AQ(V*) & Wr @ Wy
is a direct sum of 7 irreducible O(V; (-, -)) modules. Since S2(V*, (,-)) is repeated
with multiplicity 2, the decomposition is not unique.
We now make this decomposition a bit more explicit to identify the factors Wr
and Wg. We adopt the notation of Equation (3.a) and let id ®7s symmetrize the

last two components of T' € ®@*V*. Let 0iqgr, be the splitting of Equation (3.c).
Finally, let @ be the map of Equation (3.d).

Lemma 4.4. We have an O(V, {-,-)) equivariant short exact sequence
0—a(V) —§(V, (")) (V) @ S5V, () — 0
which is equivariantly split by the map oid gr. -
Proof. Let F € f(V, (-,-)). We have
(id @ms) (F)(2,y, 2, w) = 3{F(z,y,z,w) + F(z,y,w, 2)},
([dens)(F) =0 < F(z,y,2,w)=—F(z,y,w,2)Vx,yz,weV.

This implies F' € a(V). Conversely, if F' € a(V), then pz4(F) = 0 and (id @7,)F =
0 and hence F' € f(V, (-,-)). Thus

ker{id @7} N(V, (-, ) = a(V).

id @mg
—_

Furthermore
p34(F) = (id®@ Tr)((id @) F)
and consequently (id ®7s) takes values in A2(V*) @ SZ(V*, (-, -)).
In the proof of Theorem 3.2, we showed that oiq gr, takes values in t(V') and
that (id ®7s)0iq . is the identity on A2(V) ® S2(V*). Thus oiq g, S € §(V, (-,-))
if and only if S € A%2(V*) @ SE(V*, (-,-)). O
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This shows that
(V. () = a(V) @ A2 (V) @ SV, ()

S0

A(VF) @ SFV*, () = S5V, () @ A (V) @ Wr @ Ws.
We therefore study A%(V*) @ S?(V*) as an O(V, (-,-)) module and identify the
copies of A2(V*) and S2(V*,(-,-)) in A2(V*) @ S2(V*,(-,-)). Let

O e A (V) @S5V, (), $eS5(V (), weA*(V").
Let = be as in Equation (1.r). Define:

(©)jk = (ms(p140)) 1 = 5 25 E{Oujnt + Oinji}
(©)k = (malpra®))jx = 5 250 EH{Oujr — Ot}
TA(0)ijkt = (Ojir + Oirji — Ovjix — Oujk) ,
(V)i = ={Zajk — Ejvie + Einthji — Ejtbat
Ormr.o(W)ijkt = =25 {Eawjr + Eipwji — Ejiwie — Ejpwit + =wi B},
Orn ()il = 5(Owjit — Oniji) ,
AFA* (V) = {0 : Oyjts = —Ojirt = —Ouij, D5 E'Oijr =0} ,
S(V, () == ker{m s} Nker{m o} Nker{ma} N A*(V*) @ SF(V*, (-, -)).

T1,s

T1,a

Orm,s

Lemma 4.5. We have O(V, {-,-)) equivariant short exact sequences

0 — ker{m s} = A*(V") @ S§(V", (-,-)) = SF(V*, () =0,

0= ker{m,o} = A* (V) @ S3(V*, (-,1) === A* (V") =0,

0 — ker{m 4} Nker{mp} — ker{m o} —2= AZ(A*(V*)) = 0.
These sequences are equivariantly split, respectively, by ox, ., Or, ,, and or,. This
gives an O(V, {(-,-)) equivariant decomposition of

A (V)@ SF(V, () & SEV™, () @ A2(V) @ AGA* (V) @ S(V, (-, )

as the direct sum of irreducible O(V, (-,-)) modules where

dim{SF(V*, (-,-))} = Co=tfm=2),
dim{A2(V*)} = =l
dim{A2(A2(V*))} = m(m 1)(m 3)(m+2)

dim{&(V, (-,-))} = (m—1)(m— 2)8(m+1)(m+4)
dim{A2(V*) @ S(V*, (-,-))} = mm=%(m+2)

We have Wg ~ AZ(A2(V*)) and Wq =~ &(V, (-, ).
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Proof. It is clear that 7 s takes values in S?(V*). Let = be as in Equation (1.r).
We show that 7 s takes values in S3(V*, (-, -)) by checking:

Tr{m,s(0)} = 5 Xijn ' {Oum + Ourji}
= Din EVE O = 35 FEE O
== Zijkl EjkEil@ijkl = —Tr{m (0)}.
It is clear that o, , takes values in A?(V*) ® S?(V*). We verify that o,  takes
values in A2(V*) @ S3(V*,(-,-)) by checking the trace condition:
S ¥ om (V)i = £ 30 B Eatie — Ejitbie + Zaetbi — Setba
= L{j —hij +1bji — i} =0.
We check that o, , is a splitting by verifying:
1,5 (0, (V) ik = 50 2o EH{Eavie — Ejivbin + Eiethj — Sjetbi
+ Eatk; — Exiij + Zij ¥ — Zxa
= s {mapjr — Yk + Uik — Sy Tr{e}
+ My — Y + Yy — Exy Tr{y}}
= Yjk -
Clearly my 4 takes values in A%(V*) and o, , takes values in A%(V*) ® S?(V*).
We check the trace condition by computing:
{(d @ Tr) (o, (W))}ij = 5fg L EH{Eawsn +Eavwi — Ejiwic — Ejpwit + 7 wiiSh
= s {wsi + wii — wij — wig + rmwi }

= (—4+ Lm)w;; =0.

m24

To check o, , is a splitting, we compute:

T1,0(Om.0 (W))jk =3 =87 You 2 {Euwjk + Eixwji — Ejiwik — Ejpwit + =wij Sk

4 —_
— Bawkj — Eijwit + Ewij + Erjwi — rwiS}

=5 g {Mwjk + Wik — Wik + Wk — MWkj — Wk + Wk — Wik}
=g {m — o wik = Wik
Let S € ker{m o} N {A2(V*) @ SZ(V*,(-,-))}. To check that 7, takes values in
A3(A%(V*)), we compute:
TA(S)ijkt = 5 (Skjit + Sikgt — Sizix — Sijr) »
7A(S)jikt = 5(Skiji + Sikit — Stijr — Sjiir) = —7a(S)izht »
(Sitkj + Skity — Sjiki — Skjta) = —7a(S)ijkt »
p1a(ma(S))ji = 5 20 ' {Skjar + Sikjt — Sijie — Sujk}
{3034(S) + m1.a(5)}jk = 0.

N[ =

N
-
—~
n
~—
z
S
D=
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Let T € A3(A%(V*)). To check o, takes values in A%2(V*) ® SZ(V*, (-,-)), we
compute:

Orn (T)iger = 5(Thjit — Thijt) »
Oan(T)jint = 3(Twiji — Trjit) = —0nn (T)ijut
oran(T)ijie = 5(Tijie — Tiiji) = (Tjkli — Tirij)
= L (Thjir — Triji) = oxp (T)ijure
Yk EM oy (T)iju = % EM (Tijar — Thit) = 0.
%l

Finally, we verify that o, is a splitting by computing

{ma(@ns (T)Yijit = 5(0ms (D)ijit + 0rn (D)ikjt — O (Dhigi — Ora (T)itng)
= 1(Tijir = Tirjt + Tjrar — Tjirt — Trjii + Thigi — Traig + Thity)
= Tijpi -
We compute dimensions:

dim{A*(V*)} = im(m — 1),
dim{A*(A*(V*))} = 3{zm(m — D}{zm(m — 1) -1},
dim{AZ(A2(V))} = dim{AZ(A2(V*))} — dim{A2(V")}
=1{im(m - D)Him(m —1) -1} — Im(m — 1)
= {mlm = DHgmlm —1) =}~ 1)
= t{m(m —1)}{m(m — 1) — 6} = gm(m — 1)(m — 3)(m + 2)
= dim{Ws}

and

dim{S(V, (-,-))} = dim{A*(V*) @ S3(V*, (-,-))} — dim{AF(A*(V*))}
— dim{SF(V*, (;,-))} — dim{A*(V*)}
= dim{A*(V*) @ S§(V*, (-,-)}
— dim{A*(A*(V*))} — dim{SF(V*, (,-)}
mm=1)(m-1)m+2) _ mlm-1m(m-1)=2) _ (m-1)m+2)

= =g {2m(m — 1)(m +2) = m(m — 2)(m + 1) — 4(m +2)}
— (mfl)(mf2)8(m+1)(m+4) — dim{ W5} .

The remaining assertions now follow from Theorem 2.5 (1); this also establishes
Theorem 2.5 (2c¢). O
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As an immediate consequence, we have
Theorem 4.6.
(1) There is an O(V,(-,-)) equivariant orthogonal decomposition of
FV)=f(V) =W @Wo ® Wy W5 @ Ws ® Wy & Wy
as the direct sum of irreducible O(V, (-, -)) modules where:

mmﬂm}_1 dim{Wp} = dim{Ws} = (m=tmt2)

dim{W,} = _1) dim{Ws} = m(m+1)(m 3)(m+2)
dim{W7} = (m 1)(m 2)(m+1)(m+4)’ dim{Ws} = m(m— 1)(m 3)(m+2)

(2) There are the following isomorphisms as O({-,-)) modules:
(a) Wi ~ R, Wy = W5 ~ Sg(V*, <', >), and Wy = AZ(V*)
(b) Ws = w(V, (-,-)) is the space of Weyl conformal curvature tensors.
(c) W7 = &(V,(-,-)) and Wg ~ A3(A%(V*)).

5. THE PROOF OF THEOREM 3.1

Let b be a non-empty subspace of a(V') which is invariant under the action of
GL(V). We must show that b = a(V). Choose a positive definite inner prod-
uct (-,-) on V. Then b is invariant under the action of O(V, {-,-)) as well. Let
Tw, T, and mr be the projections on the appropriate module summands in the
decomposition of Theorem 3.2 (3);
mR(R) == 1(p4(R)),  mo(R) := pra(R) — 5 7(pra(R)) (),

Too(R) i= B — G, (p1a(R))  where
’P14(7p) = %1# A <'7 > - %<v > A <'v > .

Since O(V, (-,+)) is a compact Lie group acting orthogonally, the projections are
orthogonal projections. Furthermore:

T (b) # {0} = w(V, (-, ) C
mo(b )75{0}=>0ap14(5§(‘/< '>)) Cb,
mr(b) # {0} = 00, ((-,) Cb.

Let {e;} be an orthonormal basis for V. Let {\;} be distinct positive constants.
Define © € GL(V') by setting:
@(61) = )\iei .

Suppose mr(b) # {0}. The component corresponding to R in a(V') is generated
by A:= (-,-) A{(-,-). Consequently A € b; the non-zero components of ©*(A) and
p14(©*(A)) are, up to the usual Zy symmetries and modulo a suitable normalizing
constant which plays no role, given by

O (A)(ei,ej,¢5,e1) = XIAT and  p1a(©7(A))(es ) = X 354, A -

This shows the projection of ©*(A), and hence of b, on So(V*,(-,-)) is non-zero.
Let A; be the algebraic curvature tensor whose only non-zero component, up to
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the usual Zy symmetries, is A (e1, ea,e2,e1). As b is closed, we show that A; € b
by taking the limit

AM—1, X—1 XA —0forj>3.
As {A1 — 04,5, (p14(A41))} (€1, €3, €3,e1) # 0, one has my (b) # 0. We summarize:
(b)) #0 = b=a(V).
Suppose o(b) # 0. Then oq,,,(SZ(V*, (-,+))) C b. Define ¢ € SZ(V*,{-,))
with non-zero components
Yier,er) =1, ez, ea) =1, and (es,e3) =—2.
Let A =04, () = =25¢ A (-,-) € b. We compute:

O (A)(ei, €5, er, 1) = NAjAe =25 {(ei, e1)d5k + Y (es, ex)d
—(ei, er)d0 — blej, en)din
T(p14(0%(A))) = 755 X0, ©* Aleis e, €5, ¢:)
= 225 {23 —22) (X, M) - 25 M A5 - 205

This is non-zero for generic values of X. This shows mr(b) # {0}. Combining this
result with the result of the previous paragraph yields:

pa(®) £{0) = b=a(V).
Finally, suppose 7y (b) # 0. Then to(V,(-,-)) C b. Let A € a be defined with
non-zero components, up to the usual Z, symmetries, by
A(er,es,eq,e1) =+1 and  A(eg,es,eq,e9) = —1.
Then p14(A) =0so A € w(V, (-,-)). We have
O*(A)(e1,e3,e4,e1) = N2A3As and O*(A)(ea, e3,e4,€2) = A3A3\g.

Thus p14(0%(A))(es,e4) = A3As(A\F — A2) # 0. Since p14(©*(A)) # 0 we may
conclude that b = a(V). O
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