[1] Abel U.:
The moments for the Meyer-König and Zeller operators. J. Approx. Theory 82 (1995), 352–361.
MR 1348726 |
Zbl 0828.41009
[2] Alkemade J. A. H.:
The second moment for the Meyer-König and Zeller operators. J. Approx. Theory 40 (1984), 261–273.
MR 0736073 |
Zbl 0575.41013
[3] Abel U., Della Vecchia B.: Enhanced asymptotic approximation by linear operators. Facta Univ., Ser. Math. Inf. 19 (2004), 37–51.
[4] Becker M., Nessel R. J.:
A global approximation theorem for Meyer-König and Zeller operator. Math. Z. 160 (1978), 195–206.
MR 0510745
[5] Chen W.:
On the integral type Meyer-König and Zeller operators. Approx. Theory Appl. 2(3) (1986), 7–18.
MR 0877624 |
Zbl 0613.41021
[6] De Vore R. A.: The Approximation of Continuous Functions by Positive Linear operators. New York, 1972.
[7] Fichtenholz G. M.: Calculus. Vol. 1, Warsaw, 1964.
[8] Guo S.:
On the rate of convergence of integrated Meyer-König and Zeller operators for functions of bounded variation. J. Approx. Theory 56 (1989), 245–255.
MR 0990339
[9] Gupta V.:
A note on Meyer-König and Zeller operators for functions of bounded variation. Approx. Theory Appl. 18(3) (2002), 99–102.
MR 1942355 |
Zbl 1073.41506
[10] Hölzle G. E.:
On the degree of approximation of continuous functions by a class of sequences of linear positive operators. Indag. Math. 42 (1980), 171–181.
MR 0577572 |
Zbl 0427.41013
[11] Kirov G. H.:
A generalization of the Bernstein polynomials. Math. Balk. New Ser. bf 6 (1992), 147–153.
MR 1182946 |
Zbl 0838.41017
[12] Kirov G. H., Popova L.:
A generalization of the linear positive operators. Math. Balk. New Ser. 7 (1993), 149–162.
MR 1270375 |
Zbl 0833.41016
[13] Lupas A.:
Approximation properties of the $M_{n}$-operators. Aequationes Math. 5 (1970), 19–37.
MR 0279495
[14] Meyer-König W., Zeller K.:
Bernsteinche Potenzreihen. Studia Math. 19 (1960), 89–94.
MR 0111965
[15] Rempulska L., Tomczak K.:
On certain modified Meyer-König and Zeller operators. Grant PB-43-71/2004.
Zbl 1107.41018
[16] Rempulska L., Skorupka M.:
On strong approximation by modified Meyer-König and Zeller operators. Tamkang J. Math. (in print).
MR 2252622 |
Zbl 1119.41022
[17] Timan A. F.:
Theory of Approximation of Functions of a Real Variable. Moscow, 1960 (Russian).
MR 0117478