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ON MODIFIED MEYER-KONIG AND ZELLER OPERATORS
OF FUNCTIONS OF TWO VARIABLES

LUCYNA REMPULSKA AND MARIOLA SKORUPKA

ABSTRACT. This paper is motivated by Kirov results on generalized Bernstein
polynomials given in [11]. We introduce certain modified Meyer-Konig and
Zeller operators in the space of differentiable functions of two variables and
we study approximation properties for them.

Some approximation properties of the Meyer-Koénig and Zeller operators
of differentiable functions of one variable are given in [15] and [16].

1. INTRODUCTION

1.1. Let C(I) be the space of real-valued functions f continuous on the interval
I :=10,1] with the norm || f|| = mg;(|f(x)| and let C"(I), r € Ny :={0,1,2,...},
be the set of all f € C(I) having the derivative f(") € C(I) (C°(I) = C(I)).

In [14] were introduced the Meyer-Kénig and Zeller operators

S opk(@)f(E5) if 0<z <1,
k=0

(1) My (fix) =
f(1) if z=1,
for n € N and f defined and bounded on I, where
(2) Puk(x) = ("Zk)xk(l—x)”“ k€ Ng, neN.

The approximation properties of the Meyer-Konig and Zeller operators of functions
of one variable vere examined in many papers, for example [1-6, 8-10, 13-14].

It is known ([1-6, 10]) that M, (f) is a positive linear operator from the space
C(I) into C(I). Moreover, for every f € C(I) there holds the following inequality

37 — 16V/3

1
(3) IMu() = Il £ === w(fi =) mEN,
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where w(f;-) is the modulus of continuity of f, i.e.
(4) w(fit) =sup{|f(z) = fy)| : w,yel, lx—y|l<t}, tel.

In [15] were introduced the following modified Meyer-Konig and Zeller operators

f(s)( +A) k 5o

" —ntkl (g if 0<z<1,
f(l) it z=1,

for f € C"(I), r € No, and n € N, where p,(-) is defined by (2). It is obvious

that if » = 0, then M,.o(f;z) = M, (f;x) for every f € C(I), x € I and n € N.

Moreover from (1), (2) and (5) we deduce that

(6) My (1;2) = ank =1 for z€lI, neN, reNy.

In [15] it is proved that if n, r € N, then M, is a linear operator from the
space C"(I) into C(I). Moreover in [15] it is proved that for every » € N there
exists a positive constant K7 (r) depending only on 7 such that

- 1
M) 37 = 11 < Ka)n e (£ 22).
for every f € C"(I) and n € N, where w (f(r); ) is the modulus of continuity of
f) defined by (4).

From (3) and (7) we can deduce that if > 2, then operators M,., defined by
(5) have better approximation properties for f € C"(I) than operators M,, defined

by (1).

1.2. In this paper we shall introduce modified Meyer-Konig and Zeller operators
in the space of differentiable functions of two variables and we shall give an ap-
proximation theorem for them. We shall show that these operators have better
approximation properties than classical Meyer-Konig and Zeller operators.

Let I% := {(x,y) : 2,y € I} and let C(I?) be the space of all real-valued func-
tions f of two variables continuous on I? with the norm

(8) Al o= e [f(z,9)]-
(zy)el?
For f € C(I?) we define the modulus of continuity
9) w(fys,t) = sup { |f(u,v) = f(z,y)] : (u,0), (z,y) € %,

|U_$|§S,|’U—y|§t}, S,tEI

It is known ([17], p.124) that if f € C(I?), then w(f;s,t) is nondecreasing function

of variables s, t and
w(fiA18,Aat) <w (f;A15,0) +w (f;0,A2t)

<M +1Dw(f;5,0)+ A2 + 1) w(f;0,1)

<

(A1 + X2 +2)w(f;s,t)
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for A1, Ay = const > 0 and A1s, Aot € I. Moreover for every f € C(IQ) we have

S}E%Jr w(f;s,t)=0.
Similarly to §1.1 we define the set C"(I%), r € Ny, of all f € (I?) having all
partial derivatives f(m) i € C(I?),0<i<m<r. Clearly C°(I?) = C(I?).

pm—i

In the space C"(I?), we introduce analogues of operators M,, and M,,, given
by formulas (1) and (5).

Definition 1. Let m,n € N. The Meyer-Konig and Zeller operator of f € C(I?)
is defined by the formula

ZO kzopmj(x)pnk(y)f (Emjr&nk) if 0<z, y <1,
Jj= =
Pmj (@) f (&mys 1 if 0<z<l1,y=1,

(10) Mon(f;,y) = %o ] Gt

> Pak(y)f (1, &nk) if 2=1,0<y<1,

k=0

(1,1) if z=y=1,

where pp,;(-) is given by (2) and
(11) &ap ::aLj—ﬂ for a€ N, g€ Ny.

In Section 2 we shall prove that M,, ,(f) € C(I?) if f € C(I?).

From (10), (11) and (1) we deduce that

(12) My n(f(t,2);2,1) = My, (f1(t); z) for x €I,
(13) My a(f(t,2);1,y) = My (f2(2);y) fory €1,
for f € C(I?), where

(14) fi(@) = f(x,1), fay) == f(Ly) for z,y € .

Definition 2. Let n,r € N be fixed numbers. The n-th modified Meyer-Koénig
and Zeller operator of functions f € C"(I?) we define by the formula
(15)

> paj(@)par(y) 3 T i 0 <ay <1,
=0 k=0 s=0
Moo (f:2,) = Zopnj(x) ZO 421 (Ens) if 0<z<l1,y=1,
nyr [ T 1= 5=
o N fo(Enk) : _
> pak(y) D = if x=1,0<y<1,
k=0 s=0
(1,1) if z=y=1,
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where p,; and &,; are given by (2) and (11), fi and fo are defined by (14) and
d® f (xo,y0), d° f1 (zo) and d° f2 (yo) are the s-th differentials:

S

a6) s o)=Y ()7 o) (e = a0) = )
1=0

A7) dfi(wo) = f17 (wo) (x — 20)°,  d°fa (y0) = £5”) (y0) (¥ — %0)° -
From (14)—(17), (11) and (5) we deduce that
1

(18) MH;T(f; Zz, ) = Mn;r (fl; Z‘) ) Mn;r(f; 17 y) = Mn;r (fQ; y)
and (similarly to (6))
(19) My (1;2,y) =1

forall z,y € I, n € N and r € Nj.

In Section 2 we shall give some auxiliary results. The approximation theorems
will be given in Section 3.

In this paper we shall denote by K;(r), ¢ € N, suitable positive constants
depending only on indicated parameter r.

2. LEMMAS

2.1. First we shall give some elementary properties of operators M,, , defined by
(10).

Lemma 1. Let m,n € N be fived numbers. Then for every f € C(I?) we have
(20) lim My, ,(fi2.y) = F(L1).
xr,Yy—1—

Proof. Fix m,n € N and f € C(I?). From (10), (8), (2) and (6) we deduce that
M. (f) is continuous function on D = {(z,y) : 0 <z,y < 1} and

Mo (F52,9)] < 11D 9 (@) D pak () = IS -
3=0 k=0
Obviously,
(21) M, n(fvx y Z mej pnk (f (fmjvfnk) f(lv 1)) )
=0 k=0

for (z,y) € D. Next by (11) we have
(22) lm (f (€mg» &nk) — £(1,1)) =0
and by (8)
(23) |f (mjr&nn) — FLD[ <2 fl,  j, k€ No.

Choose ¢ > 0. Then by (22) there exist natural numbers jo = jo(¢) and
ko = ko(e) such that

(24) [ (€mj &nr) = F(L D[ < for 5> jo, k> ko
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Moreover from (21) we get

ko

(Mo fi2,1) — (zz+ >3
=jo+

j=0k=0 J

+Z Z Z )pmg ) P (¥)

Jj=0k=ko+1 j=jo+1k=ko+1
X |f(€mg7§nk) - f(Ll)‘

::Zl+z2+z3+z4, (z,y) € D.

By (24) and (6) we have

24 <e mej(x) ank(y) =e¢ for (z,y)€D.
j=0 k=0

From (2) we deduce that

1 k=0

(25) 111{17 pnk(x) =0 for fixed k€ Ny and neN.
Applying (23) and (25), we get
Jo ko
> <20 2}pmj(x)kzpnk(y) =o(l), as zy—1-.
= —0

Analogously, by (23), (25) and (6) we get

D, 2 pmi(@) Y P () = 201F 1D pms(@)
j=0 k=0 J=0

=o(l) as z—1—,0<y<1,

ko
Yo <21 parly) =o(1) as y—1-, 0<z <1,
k=0

Combining the above, we obtain

Moyn(fiz,y) — flz,y) =0(l) asz — 1—, y — 1 —.
Thus the proof of (20) is completed. O

Arguing similarly as in the proof of Lemma 1, we can prove the following

Lemma 2. Let m,n € N and let f € C(I?). Then

Hm Y g () Y ok (W) (f G ) = f (€mjn 1) =0
=0 =0

y—1—

for every 0 < x <1, and

i D k() D P (2) (F (g &or) = F (1 €nr)) = 0
k=0 Jj=0
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for every 0 <y < 1. Moreover we have

lim mej(x) f (gmjv 1) = f(l, 1)7
7=0

T—1— 4

lim ank(y) f (]-’gnk) = f(]-’ 1)
k=0

y—1—

Applying (10)—(15), Lemma 1 and Lemma 2, we easily obtain

Lemma 3. The Meyer-Konig and Zeller operator My, ,, m,n € N, defined by
(10) is a positive linear operator from the space C(I?) into C(I%). Moreover for
every f € C(I%) we have

Mo n(OI < (£, mneN.

In [1, 4] is proved the following
Lemma 4. For every x € I and n € N we have
M,(L;z) =1, M, (t;x) = x,
M, (z) = - +x§op"k(x)(% ) ¥ 0se<t,
1 if x=1,
which imply that
M, ((t —z)* )

[
s

(t2; x) —2x M, (t;z) + 2° = M, (t2;x) — 22

118

xk Opnk(x)m if 0<z<1,

0 if v=1,

< for el neN.

1
S| ——

From results given in [1] and [10] we obtain the following
Lemma 5. For every s € N there exists Ka(s) = const. > 0 such that
Mn((t—x)Qs;x)SKg(s)n_s for ze€l neN.
Consequently,

Mn(|t—x|s;x)§(K2(s)n_S)% for ze€l, neN.

2.2. Reasoning similarly as in the proof of Lemma 1 and applying (11)—(14), we
can derive the following properties of operators M, defined by (15).
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Lemma 6. Let n,r € N. Then Mn;r is a linear operator from the space C"(I?)
into C(I?). Moreover there exists K3(r) = const. > 0 such that

(26) [ Moo (f5-,)|| < Ks(r ZZH p

s=0 =0

for every f € C"(I?).
Proof. We shall prove only (26). By (11) we have
|x_€nj|gl7 |y_§nk|S1 for xayela j,kENo,nEN.

Using these inequalities and (16) and (8) to (15) we can write

]:0k 0
T 1 s .
<§;gcwﬁ@

for 0 <z, y <1andn,r € N. Similarly, by (17), we obtain

— "1y e N
| Mur(fi2, )] < 3 SIAYON < D0 51148

)

s=0 " s=0
‘Mn;r(f?lay” Z |Hf2g) H Z '||fy9) 9
s=0 s=0

for 0 < x, y < 1 and n,7 € N. Applying the above inequalities and (15), we

immediately derive (26). O
3. THEOREMS

3.1. First we shall prove approximation theorem for f € C(I%) and M,, »(f).

Theorem 1. For every f € C(I?) and m,n € N we have

o) 1300 = £ < 40 i = =)

where w(f;-,-) is the modulus of continuity of f defined by (9).
Proof. From (10) and (6) we deduce that

(28) Mm,n(f;xvy) - f(xay) =

i’io ki'fopm 2Pk () ( Emgs &) — fl@y)) i 0<az, y<1,
fa
) Epw@ () - F1) it 0<a<l y=1,
_lZ
kZ_IOpnk(y)(f(l,fnk)—f(l,y)) if z=1,0<y<1,
0 if z=y=1,
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for f € C(I?) and m,n € N. If 0 < 2,y < 1, then by (11) and (9) and properties
of the modulus of continuity we have

|f (gmjvfnk) - f(x,y)l <w (fv |fmj - x| ) |§nk - y|)
< (VA 60 =l + v 6 = 91 +2) w(Fi o= )
and next by (28), (6) and (1) we can write

(M (f5,y) = (wy)|<w(f,\/—f){\/_M ~efa)

+VnMa(|z = yliy) +2} .
Using the Holder inequality and Lemma 4, we get

M, (|t < {M,, ((t M (1:2)} < —
it =alia) < (M (0= 25) (M (i} <
and analogously
1
Mn - ; = T =5
(Iz=yhy) Tn
for 0 <z, y < 1. From the above we obtain
1 1
. _ < L
(29) (Mo (F50,0) = S ()] < 4e(fi 7= =)
for 0 <z, y <1and m,n € N. Analogously we deduce that
1
. _ < [
(30) Mo n(f31) = £, )] S 40(f; 7=,0)
(31) [Myn(:1,9) — F(19) < 400 (F:0, =)
B = \/ﬁ

forall0 <2 <1,0<y<1and m,ne N. Now from (28)—(31) and (8) and by
properties of w(f;-,-) immediately results (27). O

From Theorem 1 we can derive
Corollary 1. If f € C(I?), then
Corollary 2. If f € C1(I?), then

_1

(32) M (f) = FIL< AL+ ILAN) 72 nen.

Indeed, by (27), (9) and properties of w(f;-,-) ([17], p.124) we can write
1

130,000 = 11 < 4 (11 7=.0) + o £:0.=) ).
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for f € C(I?) and n € N. Moreover, if f € C1(I?), then we have

o(1:72.0) = sup {If(w.9) = Flo)]  (.0). ) € P =] < =}
< | falln=t/?
and analogously
w(£:0,—=) < Ifyln2.

From the above follows (32).

7)

3.2. Now we shall prove an analogue of (7) for f € C"(I?) and Mnr(f)

Theorem 2. Let r € N be a fivzed number. Then there exists K4(r) = const. > 0
such that for every f € C™(I?) and n € N we have

M. — rnfg (T) LL
(33) Mo () = £ < Ka(r) Z (5 7 m)

where w (frr iy ,-) is the modulus of continuity defined by (9).
Proof. The formulas (15), (18), (19) and (6) imply that

(34) My (fiz,y) — flz,y) =

> 3 pus(@par(y)( X Lt — fay)) i 0<ay<1,
=0 k=0 s=0
posa) (3 HE — fi(a)) it 0<e<ly=1,
= q =0 5=0
> puna) (3 L) — foy)) if 2=1,0<y<1,
k=0 s=0
0 if z=y=1,

for every f € C"(I?) and n € N, where fi(x) and f2(y) are defined by (14).

a) First let 0 < 2,y < 1. Then we apply the following Taylor formula ([7]) of
f € CT(I?) at a fixed point (zg,yo) € I*

(59) Say) =y TIEm)

2Tl (r—1)!

x / (= O (@ FEF) - d" f(xo,y0)) i, (2,y) € 12,
0

where (Z,9) = (zo+t(x—x0), yo+t(y—1yo)) and differentials d* f (xo,yo), 0 < s <7,
and d" f(Z,y) are defined for Az = z — z9 and Ay =y — yo.

Using (35) with (zo,y0) = (gnj,gnk) to (34), we get

(36) ‘Mn;r(.ﬁ z, y) - f( = | Z ZP’I’L] pnk j,k;r(f; xz, y) ’

7=0 k=0
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with
Ajir(fi,y) = / 0 (6 1 — ), i — o)
— " f (s o) d

By (16) and (9) and properties of modulus of continuity, we have

1 r ,
(37) Aj,k:;r(f; Z, y) S / (]_ _ t)’rfl Z <’L>
0 i=0
e (fi:)ﬂ i;t |QL‘ o g"]| 7t |y - gnk|) |QL‘ - gnjr_i |y - gnkv dt

_Z< > ( Ty ‘.| EW«J| |y fnk|) |x_§nj|r_i |y_§nk|l

L (e

X (\/ﬁm —&njl + vV ly — &l +2) |2 _gnj|r_i |y_€nk|l .
Using (37) to (36) and by (10) and (1), we can write

o< 5 (e 2

< AV M, (= al ™ 2) My (12 = ')
+ VR My ([t =2 a) My (12 =y y)
+ 2M,, (Jt — 2|5 2) My (12 — yl'sy) } :

| /\

\ /\

which by Lemma 5 yields

— i (T r 1 1
3 (i)~ il < Kot F 3 (7)o(r0 )
for0<z,y<landn € N.

b) Nowlet 0 <z <1l,y=1and n € N. By (17)( )and( ) and (7) we have
(39) |Mn;r(f;xv ]-) - f(IE, 1)‘ = |Mn,r(f

@)
)

SKl( )n 2w(f(r)
Analogously we obtain
(40) |Mar (£ 1,9) = F(1,y)| = [ M (f2;9) — fa(y)]
< Ky(r) Tf%w< 2(T); %)

for0<y<1l,nméeN.
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From (14) results that flr)(x) = flr )(x 1) and f; T)( )= f;:)(l,y). Next by (4)
and (9) we have

r 1 m, 1 1
(41) (fl ’\/ﬁ)<w< 1:'"77; )SW( r*777%)7
o 1 1
(42) (14 ,%) w( 1050, —= \/ﬁ ) <w(fP: - N \/_)
for n € N. Collecting (38)—(42) and by (34) and (8), we obtain the desired
inequality (33). O

From Theorem 2 and Theorem 1 we derive the following
Corollary 3. For every f € C"(I?), r € N, we have
lim 0 || M (f) - f]| = 0.

Finally we rgr/nark that if 2 < r € N, then the order of approximation of
f € C"(I?) by M,,..(f) defined by (15) is better than the order of approximation
of this function f by classical Meyer-Konig and Zeller operators M, ,,(f) defined
by (10).
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