Previous |  Up |  Next

Article

Keywords:
1-jet fibre bundles; nonlinear connections; quadratic Lagrangian functions
Summary:
The aim of this paper is to construct a canonical nonlinear connection $\Gamma =(M_{(\alpha )\beta }^{(i)}, N_{(\alpha )j}^{(i)})$ on the 1-jet space $J^{1}(T,M)$ from the Euler-Lagrange equations of the quadratic multi-time Lagrangian function \[ L=h^{\alpha \beta }(t)g_{ij}(t,x)x_{\alpha }^{i}x_{\beta }^{j}+U_{(i)}^{(\alpha )}(t,x)x_{\alpha }^{i}+F(t,x)\,. \]
References:
[1] Asanov G. S.: Gauge-Covariant Stationary Curves on Finslerian and Jet Fibrations and Gauge Extension of Lorentz Force. Tensor (N.S.) 50 (1991), 122–137. MR 1164848
[2] Asanov G. S.: Jet Extension of Finslerian Gauge Approach. Fortschr. Phys. 38(8) (1990), 571–610. MR 1076500 | Zbl 0744.53035
[3] Cordero L. A., Dodson C. T. J., de Léon M.: Differential Geometry of Frame Bundles. Kluwer Academic Publishers, 1989. MR 0980716 | Zbl 0673.53001
[4] Eells J., Lemaire L.: A Report on Harmonic Maps. Bull. London Math. Soc. 10 (1978), 1–68. MR 0495450 | Zbl 0401.58003
[5] Giachetta G., Mangiarotti L., Sardanashvily G.: Covariant Hamiltonian Field Theory. http://xxx.lanl.gov/hep-th/9904062, (1999).
[6] Gotay M. J., Isenberg J., Marsden J. E.: Momentum Maps and the Hamiltonian Structure of Classical Relativistic Fields. http://xxx.lanl.gov/hep/9801019, (1998).
[7] Holm D. D., Marsden J. E., Raţiu T. S.: The Euler-Poincaré Equations and Semidirect Products with Applications to Continuum Theories. http://xxx.lanl.gov/chao-dyn/9801015, (1998). MR 1627802 | Zbl 0951.37020
[8] Kamran N., Olver P. J.: Le Probléme d’Equivalence à une Divergence prés dans le Calcul des Variations des Intégrales Multiple. C. R. Acad. Sci. Paris, 308, Série I, (1989), 249–252. MR 1006072
[9] Michor P. W., Raţiu T. S.: On the Geometry of the Virasoro-Bott Group. Helderman-Verlag, No. 8 (1998), 293–309. MR 1650358 | Zbl 0945.58005
[10] Miron R., Anastasiei M.: The Geometry of Lagrange Spaces: Theory and Applications. Kluwer Academic Publishers, 1994. MR 1281613 | Zbl 0831.53001
[11] Miron R., Kirkovits M. S., Anastasiei M.: A Geometrical Model for Variational Problems of Multiple Integrals. Proc. Conf. Diff. Geom. Appl., June 26-July 3, (1988), Dubrovnik, Yugoslavia. MR 1040070
[12] Neagu M.: Generalized Metrical Multi-Time Lagrange Geometry of Physical Fields. Forum Math. 15(1) (2003), 63–92. MR 1957279 | Zbl 1027.53090
[13] Neagu M.: Ricci and Bianchi Identities for $h$-Normal $\Gamma $-Linear Connections on $J^{1}(T,M)$. Hindawi Publishing Corporation, Int. J. Math. Math. Sci. 34 (2003), 2177–2192. MR 1991962
[14] Neagu M.: The Geometry of Relativistic Rheonomic Lagrange Spaces. Proceedings of Workshop on Diff. Geom., Global Analysis, Lie Algebras, No. 5, 142–169, (2001); Editor: Prof. Dr. Grigorios Tsagas, Aristotle University of Thessaloniki, Greece. MR 1896912 | Zbl 0996.53049
[15] Neagu M., Udrişte C., Oană A.: Multi-Time Dependent Sprays and h-Traceless Maps. Balkan J. Geom. Appl. 10(2) (2005), 76–92. MR 2235108
[16] Olver P. J.: Applications of Lie Groups to Differential Equations. Springer-Verlag, 1986. MR 0836734 | Zbl 0588.22001
[17] Olver P. J.: Canonical Elastic Moduli. J. Elasticity 19, 189–212, (1988). MR 0940120 | Zbl 0658.73014
[18] Saunders D.: The Geometry of Jet Bundles. Cambridge University Press, New-York, London, 1989. MR 0989588 | Zbl 0665.58002
[19] Vondra A.: Symmetries of Connections on Fibered Manifolds. Arch. Math. (Brno) 30 (1994), 97–115. MR 1292562 | Zbl 0813.35006
Partner of
EuDML logo