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FROM EULER-LAGRANGE EQUATIONS TO CANONICAL

NONLINEAR CONNECTIONS

MIRCEA NEAGU

Abstract. The aim of this paper is to construct a canonical nonlinear con-

nection Γ = (M
(i)
(α)β

, N
(i)
(α)j

) on the 1-jet space J1(T, M) from the Euler-

Lagrange equations of the quadratic multi-time Lagrangian function

L = hαβ(t)gij (t, x)xi
αx

j
β

+ U
(α)
(i)

(t, x)xi
α + F (t, x) .

1. Kronecker h-regularity

We start our study considering a smooth multi-time Lagrangian function L :
E → R, expressed locally by

(1.1) E ∋ (tα, xi, xi
α) → L(tα, xi, xi

α) ∈ R ,

whose fundamental vertical metrical d-tensor is defined by

(1.2) G
(α)(β)
(i)(j) =

1

2

∂2L

∂xi
α∂x

j
β

.

In the sequel, let us fix h = (hαβ) a semi-Riemannian metric on the temporal
manifold T and let gij(t

γ , xk, xk
γ) be a symmetric d-tensor on E = J1(T, M), of

rank n and having a constant signature.

Definition 1.1. A multi-time Lagrangian function L : E → R, having the funda-
mental vertical metrical d-tensor of the form

(1.3) G
(α)(β)
(i)(j) (tγ , xk, xk

γ) = hαβ(tγ)gij(t
γ , xk, xk

γ) ,

is called a Kronecker h-regular multi-time Lagrangian function.

In this context, we can introduce the following important concept:

Definition 1.2. A pair MLn
p = (J1(T, M), L), p = dimT, n = dim M, consisting

of the 1-jet fibre bundle and a Kronecker h-regular multi-time Lagrangian function
L : J1(T, M) → R, is called a multi-time Lagrange space.
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Remark 1.3. i) In the particular case (T, h) = (R, δ), a multi-time Lagrange
space is called a relativistic rheonomic Lagrange space and is denoted by

RLn =
(

J1(R, M), L
)

.

For more details about the relativistic rheonomic Lagrangian geometry, the reader
may consult [14].

ii) If the temporal manifold T is 1-dimensional one, then, via o temporal
reparametrization, we have

J1(T, M) ≡ J1(R, M) .

In other words, a multi-time Lagrange space, having dimT = 1, is a reparametrized
relativistic rheonomic Lagrange space.

Example 1.4. Let us suppose that the spatial manifold M is also endowed with a
semi-Riemannian metric g = (gij(x)). Then, the multi-time Lagrangian function

(1.4) L1 : E → R, L1 = hαβ(t)gij(x)xi
αx

j
β

is a Kronecker h-regular one. It follows that the pair

BSMLn
p =

(

J1(T, M), L1

)

is a multi-time Lagrange space. It is important to note that the multi-time La-
grangian L1 = L1

√

|h| is exactly the “energy” Lagrangian, whose extremals are
the harmonic maps between the semi-Riemannian manifolds (T, h) and (M, g) [4].
At the same time, the multi-time Lagrangian that governs the physical theory of
bosonic strings is of kind of the Lagrangian L1 [6].

Example 1.5. In the above notations, taking U
(α)
(i) (t, x) a d-tensor field on E

and F : T × M → R a smooth function, the more general multi-time Lagrangian
function

(1.5) L2 : E → R , L2 = hαβ(t)gij(x)xi
αx

j
β + U

(α)
(i) (t, x)xi

α + F (t, x) ,

is also a Kronecker h-regular one. The multi-time Lagrange space

EDMLn
p =

(

J1(T, M), L2

)

is called the autonomous multi-time Lagrange space of electrodynamics.
This is because, in the particular case (T, h) = (R, δ), the space EDMLn

1 naturally
generalizes the clasical Lagrange space of electrodynamics [10], that governs the
movement law of a particle placed concomitently into a gravitational field and an
electromagnetic one. In a such context, from a physical point of view, the semi-
Riemannian metric hαβ(t) (resp. gij(x)) represents the gravitational potentials

of the manifold T (resp. M), the d-tensor U
(α)
(i) (t, x) play the role of the elec-

tromagnetic potentials, and F is a potential function. The non-dynamical
character of the spatial gravitational potentials gij(x) motivates us to use the term
“autonomous”.
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Example 1.6. More general, if we consider the symmetrical d-tensor gij(t, x) on
E, of rank n and having a constant signature on E, we can define the Kronecker
h-regular multi-time Lagrangian function

(1.6) L3 : E → R , L3 = hαβ(t)gij(t, x)xi
αx

j
β + U

(α)
(i) (t, x)xi

α + F (t, x) .

The multi-time Lagrange space

NEDMLn
p =

(

J1(T, M), L3

)

is called the non-autonomous multi-time Lagrange space of electrody-

namics. From a physical point of view, we remark that the spatial gravitational
potentials gij(t, x) are dependent of the temporal coordinates tγ . For that reason,
we use the term “non-autonomous”, in order to emphasize the dynamical character
of gij(t, x).

2. The characterization theorem of multi-time Lagrange spaces

An important role and, at the same time, an obstruction in the subsequent
development of the theory of the multi-time Lagrange spaces, is played by

Theorem 2.1 (of characterization of multi-time Lagrange spaces). If p = dimT

≥ 2, then the following statements are equivalent:

i) L is a Kronecker h-regular Lagrangian function on J1(T, M).
ii) The multi-time Lagrangian function L reduces to a multi-time Lagrangian

function of non-autonomous electrodynamic kind, that is

L = hαβ(t)gij(t, x)xi
αx

j
β + U

(α)
(i) (t, x)xi

α + F (t, x) .

Proof 1. ii) ⇒ i) It is obvious.
i)⇒ ii) Let us suppose that L is a Kronecker h-regular multi-time Lagrangian

function, that is
1

2

∂2L

∂xi
α∂x

j
β

= hαβ(tγ)gij(t
γ , xk, xk

γ) .

For the beginning, let us suppose that there are two distinct indices α and β

from the set {1, . . . , p}, such that hαβ 6= 0. Let k (resp. γ) be an arbitrary element
of the set {1, . . . , n} (resp. {1, . . . , p}). Deriving the above relation with respect
to the variable xk

γ and using the Schwartz theorem, we obtain the equalities

∂gij

∂xk
γ

hαβ =
∂gjk

∂xi
α

hβγ =
∂gik

∂x
j
β

hγα, ∀ α, β, γ ∈ {1, . . . , p} , ∀ i, j, k ∈ {1, . . . , n} .

Contracting now with hγµ, we deduce

∂gij

∂xk
γ

hαβhγµ = 0 , ∀ µ ∈ {1, . . . , p} .

In these conditions, the supposing hαβ 6= 0 implies that
∂gij

∂xk
γ

= 0 for all two

arbitrary indices k and γ. Consequently, we have gij = gij(t
µ, xm).
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Supposing now that hαβ = 0, ∀ α 6= β ∈ {1, . . . , p}, it follows that we have
hαβ = hαδα

β , ∀ α, β ∈ {1, . . . , p}. In other words, we use an ortogonal system of
coordinates on the manifold T . In these conditions, the relations

∂2L

∂xi
α∂x

j
β

= 0 , ∀ α 6= β ∈ {1, . . . , p}, ∀ i, j ∈ {1, . . . , n} ,

1

2hα(t)

∂2L

∂xi
α∂x

j
α

= gij(t
µ, xm, xm

µ ) , ∀ α ∈ {1, . . . , p} , ∀ i, j ∈ {1, . . . , n}

hold good. If we fix now an indice α in the set {1, . . . , p}, from the first relation we

deduce that the local functions
∂L

∂xi
α

depend only by the coordinates (tµ, xm, xm
α ).

Considering β 6= α in the set {1, . . . , p}, the second relation implies

1

2hα(t)

∂2L

∂xi
α∂x

j
α

=
1

2hβ(t)

∂2L

∂xi
β∂x

j
β

= gij(t
µ, xm, xm

µ ) , ∀ i, j ∈ {1, . . . , n} .

Because the first term of the above equality depends by (tµ, xm, xm
α ), while the

second term is dependent only by the coordinates (tµ, xm, xm
β ), and because we

have α 6= β, we conclude that gij = gij(t
µ, xm).

Finally, the equality

1

2

∂2L

∂xi
α∂x

j
β

= hαβ(tγ)gij(t
γ , xk) , ∀ α, β ∈ {1, . . . , p}, ∀ i, j ∈ {1, . . . , n}

implies without difficulties that the multi-time Lagrangian function L is one of
non-autonomous electrodynamic kind. �

Corollary 2.2. The fundamental vertical metrical d-tensor of an arbitrary Kro-

necker h-regular multi-time Lagrangian function L is of the form

(2.1) G
(α)(β)
(i)(j) =

1

2

∂2L

∂xi
α∂x

j
β

=

{

h11(t)gij(t, x
k, yk), p = dim T = 1

hαβ(tγ)gij(t
γ , xk), p = dim T ≥ 2.

Remark 2.3. i) It is obvious that the preceding theorem is an obstruction in the
development of a fertile geometrical theory for the multi-time Lagrange spaces.
This obstruction will be surpassed in the paper [12], when we will introduce the
more general notion of a generalized multi-time Lagrange space. The gen-
eralized multi-time Riemann-Lagrange geometry on J1(T, M) will be constructed

using only a Kronecker h-regular vertical metrical d-tensor G
(α)(β)
(i)(j) and a nonlinear

connection Γ, “a priori” given on the 1-jet space J1(T, M).
ii) In the case p = dimT ≥ 2, the preceding theorem obliges us to continue our

geometrical study of the multi-time Lagrange spaces, sewering our attention upon
the non-autonomous multi-time Lagrange spaces of electrodynamics.
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3. Canonical nonlinear connection Γ

Let MLn
p = (J1(T, M), L), where dimT = p, dimM = n, be a multi-time

Lagrange space whose fundamental vertical metrical d-tensor metric is

G
(α)(β)
(i)(j) =

1

2

∂2L

∂xi
α∂x

j
β

=

{

h11(t)gij(t, x
k, yk), p = 1

hαβ(tγ)gij(t
γ , xk), p ≥ 2.

Supposing that the semi-Riemannian temporal manifold (T, h) is compact and
orientable, by integration on the manifold T , we can define the energy functional

associated to the multi-time Lagrange function L, taking

EL : C∞(T, M) → R, EL(f) =

∫

T

L(tα, xi, xi
α)

√

|h| dt1 ∧ dt2 ∧ . . . ∧ dtp ,

where the smooth map f is locally expressed by (tα) → (xi(tα)) and xi
α =

∂xi

∂tα
.

It is obvious that, for each index i ∈ {1, 2, . . . , n}, the extremals of the energy
functional EL verify the Euler-Lagrange equations

(3.1) 2G
(α)(β)
(i)(j) x

j
αβ +

∂2L

∂xj∂xi
α

xj
α −

∂L

∂xi
+

∂2L

∂tα∂xi
α

+
∂L

∂xi
α

Hγ
αγ = 0 ,

where x
j
αβ =

∂2xj

∂tα∂tβ
and H

γ
αβ are the Christoffel symbols of the semi-Riemannian

temporal metric hαβ .
Taking into account the Kronecker h-regularity of the Lagrangian function L, it

is possible to rearrange the Euler-Lagrange equations of the LagrangianL = L
√

|h|
in the following generalized Poisson form:

(3.2) ∆hxk + 2Gk(tµ, xm, xm
µ ) = 0 ,

where

∆hxk = hαβ{xk
αβ − H

γ
αβxk

γ} ,

2Gk =
gki

2

{ ∂2L

∂xj∂xi
α

xj
α −

∂L

∂xi
+

∂2L

∂tα∂xi
α

+
∂L

∂xi
α

Hγ
αγ + 2gijh

αβH
γ
αβxj

γ

}

.

Proposition 3.1. i) The geometrical object G = (Gr) is a multi-time dependent

spatial h-spray.

ii) Moreover, the spatial h-spray G = (Gl) is the h-trace of a multi-time depen-

dent spatial spray G = (G
(i)
(α)β), that is Gl = hαβG

(l)
(α)β.

Proof 2. i) By a direct calculation, we deduce the local geometrical entities

(3.3)

2Sk =
gki

2

{ ∂2L

∂xj∂xi
α

xj
α −

∂L

∂xi

}

,

2Hk =
gki

2

{ ∂2L

∂tα∂xi
α

+
∂L

∂xi
α

Hγ
αγ

}

,

2J k = hαβH
γ
αβxj

γ ,
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verify the following transformation laws:

(3.4)

2Sp = 2S̃r ∂xp

∂x̃r
+ hαµ ∂xp

∂x̃l

∂t̃γ

∂tµ

∂x̃l
γ

∂xj
xj

α ,

2Hp = 2H̃r ∂xp

∂x̃r
+ hαµ ∂xp

∂x̃l

∂t̃γ

∂tµ

∂x̃l
γ

∂tα
,

2J p = 2J̃ r ∂xp

∂x̃r
− hαµ ∂xp

∂x̃l

∂t̃γ

∂tµ

∂x̃l
γ

∂tα
.

It follows that the local entities 2Gp = 2Sp + 2Hp + 2J p modify by the transfor-
mation laws

(3.5) 2G̃r = 2Gp ∂x̃r

∂xp
− hαµ ∂xp

∂x̃j

∂x̃r
µ

∂xp
x̃j

α ,

that is what we were looking for.
ii) In the particular case dimT = 1, any spatial h-spray G = (Gl) is the h-trace

of a spatial spray G = (G
(l)
(1)1), where G

(l)
(1)1 = h11Gl. In other words, the equality

Gl = h11G
(l)
(1)1 is true.

On the other hand, in the case dimT ≥ 2, the Theorem of characterization of
the Kronecker h-regular Lagrangian functions ensures us that

L = hαβ(t)gij(t, x)xi
αx

j
β + U

(α)
(i) (t, x)xi

α + F (t, x) .

In this particular situation, by computations, the expressions of the entities Sl, Hl

and J l reduce to

(3.6)

2Sl = hαβΓl
jkxj

αxk
β +

gli

2

[

U
(α)
(i)jx

j
α −

∂F

∂xi

]

,

2Hl = −hαβH
γ
αβxl

γ +
gli

2

[

2hαβ ∂gij

∂tα
x

j
β +

∂U
(α)
(i)

∂tα
+ U

(α)
(i) Hγ

αγ

]

,

2J l = hαβH
γ
αβxl

γ ,

where

Γl
jk =

gli

2

(∂gij

∂xk
+

∂gik

∂xj
−

∂gjk

∂xi

)

are the generalized Christoffel symbols of the multi-time dependent metric gij and

U
(α)
(i)j =

∂U
(α)
(i)

∂xj
−

∂U
(α)
(j)

∂xi
.

Consequently, the expression of the spatial h-spray G = (Gl) becomes

(3.7) 2Gp = 2Sp + 2Hp + 2J p = hαβΓl
jkxj

αxk
β + 2T l ,

where the local components

(3.8) 2T l =
gli

2

[

2hαβ ∂gij

∂tα
x

j
β + U

(α)
(i)jx

j
α +

∂U
(α)
(i)

∂tα
+ U

(α)
(i) Hγ

αγ −
∂F

∂xi

]
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represent the components of a tensor d-field T = (T l) on J1(T, M). It follows
that the d-tensor T can be written as the h-trace of the d-tensor

T
(l)
(α)β =

hαβ

p
T l ,

where p = dimT . In other words, the relation T l = hαβT
(l)
(α)β is true. Obvi-

ously, this writing is not unique one but represents a natural extension of the case
dimT = 1.

Finally, we can conclude that the spatial h-spray G = (Gl) is the h-trace of the
spatial spray

(3.9) G
(l)
(α)β =

1

2
Γl

jkxj
αxk

β + T
(l)
(α)β ,

that is the relation Gl = hαβG
(l)
(α)β holds good. �

Following previous reasonings and the preceding result, we can regard the equa-
tions (3.2) as being the equations of the harmonic maps of a multi-time dependent
spray.

Theorem 3.2. The extremals of the energy functional EL attached to the Kro-

necker h-regular Lagrangian function L are harmonic maps on J1(T, M) of the

multi-time dependent spray (H, G) defined by the temporal components

H
(i)
(α)β =











−
1

2
H1

11(t)y
i , p = 1

−
1

2
H

γ
αβxi

γ , p ≥ 2

and the local spatial components G
(i)
(α)β =

=











h11g
ik

4

[ ∂2L

∂xj∂yk
yj −

∂L

∂xk
+

∂2L

∂t∂yk
+

∂L

∂xk
H1

11 + 2h11H1
11gkly

l
]

, p = 1

1

2
Γi

jkxj
αxk

β + T
(i)
(α)β , p ≥ 2 ,

where p = dimT .

Definition 3.3. The multi-time dependent spray (H, G) constructed in the pre-
ceding Theorem is called the canonical multi-time spray attached to the

multi-time Lagrange space MLn
p .

In the sequel, by local computations, the canonical multi-time spray (H, G) of
the multi-time Lagrange space MLn

p induces naturally a nonlinear connection Γ

on J1(T, M).

Theorem 3.4. The canonical nonlinear connection

Γ = (M
(i)
(α)β , N

(i)
(α)j)
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of the multi-time Lagrange space MLn
p is defined by the temporal components

(3.10) M
(i)
(α)β = 2H

(i)
(α)β =

{

−H1
11y

i , p = 1

−H
γ
αβxi

γ , p ≥ 2 ,

and the spatial components

(3.11) N
(i)
(α)j =

∂Gi

∂x
j
γ

hαγ =











h11
∂Gi

∂yj
, p = 1

Γi
jkxk

α +
gik

2
∂gjk

∂tα + gik

4 hαγU
(γ)
(k)j , p ≥ 2 ,

where Gi = hαβG
(i)
(α)β .

Remark 3.5. In the particular case (T, h) = (R, δ), the canonical nonlinear con-

nection Γ = (0, N
(i)
(1)j) of the relativistic rheonomic Lagrange space

RLn = (J1(R, M), L)

generalizes naturally the canonical nonlinear connection of the classical rheonomic
Lagrange space Ln = (R × TM, L) [10].
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[3] Cordero, L. A., Dodson, C. T. J., de Léon, M., Differential Geometry of Frame Bundles,
Kluwer Academic Publishers, 1989.

[4] Eells, J., Lemaire, L., A Report on Harmonic Maps, Bull. London Math. Soc. 10 (1978),
1–68.

[5] Giachetta, G., Mangiarotti, L., Sardanashvily, G., Covariant Hamiltonian Field Theory,
http://xxx.lanl.gov/hep-th/9904062, (1999).

[6] Gotay, M. J., Isenberg, J., Marsden, J. E., Momentum Maps and the Hamiltonian Structure

of Classical Relativistic Fields, http://xxx.lanl.gov/hep/9801019, (1998).

[7] Holm, D. D., Marsden, J. E., Raţiu, T. S., The Euler-Poincaré Equa-
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