Previous |  Up |  Next

Article

Keywords:
locally Lipschitz function; generalized subdifferential; $p$-Laplacian; homogeneous function; variational method; Poincare-Wirtinger inequality; potential indefinite in sign
Summary:
In this paper we consider a nonlinear periodic system driven by the vector ordinary $p$-Laplacian and having a nonsmooth locally Lipschitz potential, which is positively homogeneous. Using a variational approach which exploits the homogeneity of the potential, we establish the existence of a nonconstant solution.
References:
[1] Adly S., Goeleven D.: Homoclinic orbits for a class of hemivariational inequalities. Appl. Anal. 58 (1995), 229–240. MR 1383190 | Zbl 0829.49007
[2] Adly S., Goeleven D., Motreanu D.: Periodic and homoclinic solutions for a class of unilateral problems. Discrete Contin. Dynam. Systems 3 (1997), 579–590. MR 1465127 | Zbl 0948.37013
[3] Adly S., Motreanu D.: Periodic solutions for second-order differential equations involving nonconvex superpotentials. J. Global Optim. 17 (2000), 9–17. MR 1807964 | Zbl 1055.34080
[4] Antonacci F.: Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 29 (1997), 1353–1364. MR 1484908 | Zbl 0894.34036
[5] Ben Naoum A. K., Troestler C., Willem M.: Existence and multiplicity results for homogeneous second order differential equations. J. Differential Equations 112 (1994), 239–249. MR 1287560 | Zbl 0808.58013
[6] Clarke F. H.: A new approach to Lagrange multipliers. Math. Oper. Res. I (1976), 165–174. MR 0414104 | Zbl 0404.90100
[7] Denkowski Z., Migorski S., Papageorgiou N. S.: An introduction to Nonlinear Analysis. Theory. Kluwer/Plenum, New York (2003). MR 2024162 | Zbl 1040.46001
[8] Denkowski Z., Migorski S., Papageorgiou N. S.: An introduction to Nonlinear Analysis. Applications. Kluwer/Plenum, New York (2003). MR 2024161 | Zbl 1054.47001
[9] Girardi M., Matzeu M.: Existence and multiplicity results for periodic solutions for superquadratic systems where the potential changes sign. Nonlinear Differential Equations Appl. 2 (1995), 35–61. MR 1322202
[10] Lassoued L.: Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign. Ann. Math. Pura Appl. 156 (1990), 76–111. MR 1080211
[11] Lassoued L.: Periodic solutions of a second order superquadratic system with a change of sign in the potential. J. Differential Equations 93 (1991), 1–18. MR 1122304 | Zbl 0736.34041
[12] Papageorgiou E. H., Papageorgiou N. S.: Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems. Czechoslovak Math. J. 54 (2004), 347–371. MR 2059256 | Zbl 1080.34532
[13] Tang C. L., Wu X. P.: Periodic solutions for second order Hamiltonian systems with a change sign potential. J. Math. Anal. 292 (2004), 506–516. MR 2047627 | Zbl 1078.34023
[14] Xu Y. T., Guo Z. M.: Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 51 (2002), 1273–1283. MR 1926629 | Zbl 1157.37329
Partner of
EuDML logo