[1] Adly S., Goeleven D.:
Homoclinic orbits for a class of hemivariational inequalities. Appl. Anal. 58 (1995), 229–240.
MR 1383190 |
Zbl 0829.49007
[2] Adly S., Goeleven D., Motreanu D.:
Periodic and homoclinic solutions for a class of unilateral problems. Discrete Contin. Dynam. Systems 3 (1997), 579–590.
MR 1465127 |
Zbl 0948.37013
[3] Adly S., Motreanu D.:
Periodic solutions for second-order differential equations involving nonconvex superpotentials. J. Global Optim. 17 (2000), 9–17.
MR 1807964 |
Zbl 1055.34080
[4] Antonacci F.:
Existence of periodic solutions of Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 29 (1997), 1353–1364.
MR 1484908 |
Zbl 0894.34036
[5] Ben Naoum A. K., Troestler C., Willem M.:
Existence and multiplicity results for homogeneous second order differential equations. J. Differential Equations 112 (1994), 239–249.
MR 1287560 |
Zbl 0808.58013
[6] Clarke F. H.:
A new approach to Lagrange multipliers. Math. Oper. Res. I (1976), 165–174.
MR 0414104 |
Zbl 0404.90100
[7] Denkowski Z., Migorski S., Papageorgiou N. S.:
An introduction to Nonlinear Analysis. Theory. Kluwer/Plenum, New York (2003).
MR 2024162 |
Zbl 1040.46001
[8] Denkowski Z., Migorski S., Papageorgiou N. S.:
An introduction to Nonlinear Analysis. Applications. Kluwer/Plenum, New York (2003).
MR 2024161 |
Zbl 1054.47001
[9] Girardi M., Matzeu M.:
Existence and multiplicity results for periodic solutions for superquadratic systems where the potential changes sign. Nonlinear Differential Equations Appl. 2 (1995), 35–61.
MR 1322202
[10] Lassoued L.:
Solutions periodiques d’un systeme differentiel non lineaire du second order avec changement de sign. Ann. Math. Pura Appl. 156 (1990), 76–111.
MR 1080211
[11] Lassoued L.:
Periodic solutions of a second order superquadratic system with a change of sign in the potential. J. Differential Equations 93 (1991), 1–18.
MR 1122304 |
Zbl 0736.34041
[12] Papageorgiou E. H., Papageorgiou N. S.:
Existence of solutions and of multiple solutions for nonlinear nonsmooth periodic systems. Czechoslovak Math. J. 54 (2004), 347–371.
MR 2059256 |
Zbl 1080.34532
[13] Tang C. L., Wu X. P.:
Periodic solutions for second order Hamiltonian systems with a change sign potential. J. Math. Anal. 292 (2004), 506–516.
MR 2047627 |
Zbl 1078.34023
[14] Xu Y. T., Guo Z. M.:
Existence of periodic solutions to second-order Hamiltonian systems with potential indefinite in sign. Nonlinear Anal. 51 (2002), 1273–1283.
MR 1926629 |
Zbl 1157.37329